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Abstract: This paper proposes a novel framework to generate optimal gait
trajectories for a one-legged hopping robot via iterative learning control. This
method generates gait trajectories which are solutions of a class of optimal control
problems without using precise knowledge of the plant model. It is expected to
produce natural gait movements such as that of a passive walker. Some numerical
examples demonstrate the effectiveness of the proposed method.
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1. INTRODUCTION

Passive dynamic walking originally studied by
McGeer (McGeer, 1990) inspires many researchers
to work on a gait generation problem for walk-
ing robots. They try to design more natural and
less energy consuming gait trajectories than those
produced by conventional walking control such
as ZMP based control. Behavior analysis of pas-
sive walkers were investigated, e.g, in (Osuka
and Kirihara, 2000; Sano et al., 2003). There are
some results on gait generation based on passive
dynamic walking (Goswami et al., 1997; Spong,
1999; Asano et al., 2004) by designing appropriate
feedback control systems such that the closed loop
systems behave like passive walkers. In particu-

lar, a hopping robot modelled in (Ahmadi and
Buehler, 1997) has a hopping gait for which the
input signal coincides with zero, that is, this robot
can be regarded as a passive walker walking on a
horizontal plane. Furthermore, an adaptive con-
trol system for this robot to achieve a walking
gait with zero input was proposed in the authors’
former result (Hyon and Emura, 2004).

The objective of this paper is to generate optimal
walking gait trajectories for a hopping robot via
iterative learning without using precise knowledge
of the plant model. To this end, we formulate
an optimal control type cost function and try to
find a control input minimizing it by iterative
learning technique based on variational symmetry



of Hamiltonian control systems (Fujimoto and
Sugie, 2003), which can solve a class of optimal
control problems by iteration of experiments. For
this purpose, two novel techniques with respect
to iterative learning control are proposed: One
is a technique to take the time derivatives of
the output signal into account in the iterative
learning control by employing a pseudo adjoint
of the time derivative operator. The other is
a cost function to achieve time symmetric gait
trajectories to guarantee stable walking without
a fall. Furthermore, the propose learning scheme
is applied to the hopping robot in (Ahmadi and
Buehler, 1997) and the corresponding numerical
simulations demonstrate its advantage.

2. ITERATIVE LEARNING CONTROL
BASED ON VARIATIONAL SYMMETRY

This section refers to the iterative learning control
(ILC) method based on variational symmetry in
(Fujimoto and Sugie, 2003) briefly.

2.1 Variational symmetry of Hamiltonian systems

Consider a Hamiltonian system with dissipation
and a controlled Hamiltonian H(x, u, t) described
by

Σ :



















ẋ = (J − R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

y = −
∂H(x, u, t)

∂u

T
(1)

Here x(t) ∈ R
n, u(t) ∈ R

m and y(t) ∈ R
r describe

the state, the input and the output, respectively.
The structure matrix J ∈ R

n×n and the dis-
sipation matrix R ∈ R

n×n are skew-symmetric
and symmetric positive semi-definite, respectively.
The matrix R represents dissipative elements. In
this paper the Hamiltonian system in (1) is writ-
ten as y = Σ(u). For this system, the following
theorem holds. This property is called variational

symmetry of Hamiltonian control systems.

Theorem 1. (Fujimoto and Sugie, 2003) Consider
the Hamiltonian system in (1). Suppose that J

and R are constant and that there exists a non-
singular matrix T ∈ R

n×n satisfying

J =−TJT−1

R = TRT−1 (2)

∂2H(x, u, t)

∂(x, u)2
=

(

T 0
0 I

)

∂2H(x, u, t)

∂(x, u)2

(

T−1 0
0 I

)

Suppose moreover that J−R is nonsingular. Then
the variational system dΣ of Σ and its adjoint

( dΣ)∗ of Σ have almost the same state-space
realizations.

Remark 2. Suppose the Hessian of the Hamilto-
nian with respect to (x, u) is satisfying

∂2H(x, u, t)

∂(x, u)2
(t − t0) =

∂2H(x, u, t)

∂(x, u)2
(t1 − t), ∀t ∈ [t0, t1]

(3)

Then under the appropriate initial condition of
Σ and when v is small, (4) holds.

( dΣ(u))∗(v) ≈ R ◦ (Σ(u + R(v)) − Σ(u)) (4)

where R is a time-reversal operator defined by
R(u)(t − t0) = u(t1 − t) for ∀t ∈ [t0, t1]

Equation (4) implies that we can calculate the
input-output mapping of the adjoint by only using
the input-output data of the original system.

2.2 Optimal control via iterative learning

Let us consider the system Σ in (1) and a cost
function Γ : Lm

2 [t0, t1] × Lr
2[t

0, t1] → R as follows

Γ(u, y) =
1

2

∫ t1

t0

(

u(t)TΛuu(t)

+ (y(t) − yd(t))TΛy(y(t) − yd(t))
)

dt(5)

where yd ∈ Lr
2[t

0, t1] represents a desired output
and Λu ∈ R

m×m and Λy ∈ R
r×r are positive

definite matrices. The objective is to find the op-
timal input minimizing the cost function Γ(u, y).
Note that the Fréchet derivative of Γ is dΓ(u, y).
It follows from well-known Riesz’s representation
theorem that there exists an operator Γ′(u, y) such
that

d(Γ(u, y)) = dΓ(u, y)( du, dy)

= 〈Γ′(u, y), ( du, dy)〉L2
(6)

Here we can calculate

d(Γ(u, y)) = 〈(Λuu, Λy(y − yd)), ( du, dy)〉L2

= 〈Λuu, du〉L2
+ 〈Λy(y − yd), dΣ(u)( du)〉L2

= 〈Λuu + ( dΣ(u))∗Λy(y − yd), du〉L2
(7)

Therefore the steepest descent method implies
that we should change the input u such that

du = −K
(

Λuu + ( dΣ(u))∗Λy(y − yd)
)

(8)

where K is an appropriate positive gain. Hence
the iteration law should be taken as

u(i+1) = u(i)−K(i)

(

Λuu(i)+( dΣ(u))∗Λy(y(i)−yd)
)

(9)

Here i denotes the i-th iteration in laboratory
experiment.



Suppose (3) holds, then ILC law based on varia-
tional symmetry is given by

u(2i−1) = u(2i−2) + R(Λy(y(2i−2) − yd)) (10)

u(2i) = u(2i−2) − K(2i−2)

(

Λuu(2i−2)

+R(y(2i−1) − y(2i−2))
)

(11)

provided that the initial input u(0) is equivalent
to zero.

This pair of iteration laws (10) and (11) implies
that this learning procedure needs two steps labo-
ratory experiments. In the (2i-1)-th iteration, we
can get the output signal of Σ(u+R(v)) in (4) and
then can calculate the input and output signals of
( dΣ(u))∗ from (4). Input for the 2i-th iteration
is generated by (9) with these signals.

3. EXTENSION OF ILC FOR TIME
DERIVATIVES

Let us recall that there is a constraint with respect
to cost functions in the iterative learning control
method in (Fujimoto and Sugie, 2003). For the
system Σ in (1), the output y is uniquely defined
by the definition of the input u. The possible
choice of the optimal control type cost function
used in iterative learning control is a functional
of u and y, and it is not possible to choose a
functional of ẏ the time derivative of the output.
However, the signal ẏ often plays an important
role in control systems and, particularly, it is
important to check the behavior of ẏ for the gait
trajectory generation problem. In this section,
we extend the iterative learning control method
referred in the previous section to take the time
derivative ẏ into account.

Let us consider the Hamiltonian system in (1) and
suppose that the following assumption holds.

Assumption 3. Following conditions always hold
dy(t0) = 0 and dy(t1) = 0

In iterative learning control, it is assumed that all
the initial conditions are same in each laboratory
experiment in general. Therefore the condition
dy(t0) = 0 always holds. But the other one
dy(t1) = 0 does not always hold. In order to

let the latter condition dy(t1) = 0 hold approx-
imately, we can employ an optimal control type

cost function such as
∫ t1

t1−ε
‖y(t)−yd(t)‖2dt with a

small constant ε > 0 as in (Fujimoto et al., 2003).

3.1 Pseudo adjoint of the time derivative operator

Here we investigate a pseudo adjoint of the time
derivative operator to take account of the time

derivative of the output signal ẏ in the iterative
learning control procedure.

Consider a differentiable signal ξ ∈ L2[t
0, t1] and

an operator D(·) which maps the signal ξ(t) into
its time derivative is defined as the time derivative
operator.

D(ξ)(t) :=
dξ(t)

dt
(12)

Let us provide the following lemma to define the
pseudo adjoint of the time derivative operator.

Lemma 4. Consider the signal ξ(t) defined above
and another differentiable signal η ∈ L2[t

0, t1].
Suppose that the signal ξ(t) satisfies the following
condition

ξ(t0) = ξ(t1) = 0. (13)

Then the following equation holds.

〈η, D(ξ)〉L2
= 〈−D(η), ξ〉L2

(14)

Proof Consider the inner product of η and D(ξ).
Let us calculate that

〈η, D(ξ)〉L2
=

∫ t1

t0
η(t)T

dξ(t)

dt
dt

=
[

η(t)Tξ(t)
]t1

t0
−

∫ t1

t0

dη(t)

dt

T

ξ(t) dt

(15)

Here ξ(t) satisfies the condition (13), therefore
[

η(t)Tξ(t)
]t1

t0
= 0 holds and down to

〈η, D(ξ)〉L2
=−

∫ t1

t0

dη(t)

dt

T

ξ(t) dt

= 〈−D(η), ξ〉L2
(16)

Then (16) implies (14). 2

This lemma implies

D∗ = −D

for a certain class of input signals.

3.2 Application to iterative learning control

Here we take the following cost function to illus-
trate the proposed method.

Γ(ẏ) =
1

2

∫ t1

t0

(

(ẏ(t)− ẏd(t))TΛẏ(ẏ(t)− ẏd(t))
)

dt

(17)
Here ẏd is a differentiable signal as a desired
velocity and satisfies ẏd ∈ L2[t

0, t1]. Suppose that
the output y holds Assumption 3. Then we have

d(Γ(ẏ)) = 〈Λẏ(ẏ − ẏd), dẏ〉L2
(18)

The authors’ former result (Fujimoto and Sugie,
2003) can not directly apply to this cost function



(17) because it contains ẏ. Here let us rewrite ẏ as
ẏ = D(y) with the time derivative operator D(·)
defined by Equation (12). Then we have

dẏ = dD(y)( dy). (19)

Note that the time derivative operator is linear,
we obtain dẏ = D( dy). Using Assumption 3 and
(14), we can down to

d(Γ(ẏ)) = 〈Λẏ(ẏ − ẏd), D( dy)〉L2

= 〈−D
(

Λẏ(ẏ − ẏd)
)

, dy〉L2

= 〈( dΣ(u))∗
(

−D(Λẏ(ẏ − ẏd))
)

, du〉L2

(20)

As we mentioned above, this proposed method
allows one to apply the ILC to cost functions of
state variables which do not appear in the output
y.

4. OPTIMAL GAIT GENERATION

In this section, a cost function to generate a
symmetric gait is proposed and the method in the
previous section is applied to it.

4.1 Description of the plant

Let us consider a passive hopping robot in
(Ahmadi and Buehler, 1997; Hyon and Emura,
2004) depicted in Figure 1.
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Fig. 1. Description of the plant

Here the body and the leg have mass mb and ml

and moment of inertia Jb and Ju. The mass of the
leg is located below the hip joint, with distance
d. Let us define the equivalent leg inertia Jl as
follows

Jl = Ju +
mbml

mb + ml

d2. (21)

Let us also define the control force of the leg ρ

and the control torque of the hip joint τ . Table
1 shows the physical parameters. In (Hyon and
Emura, 2004), See (Hyon and Emura, 2004) for
more detail.

Here the stance time represents the time interval
during the stance phase and the flight time is

Table 1. Parameters

notation Meaning Unit

r0 natural leg length m
m total mass kg

g gravity acceleration m/s2

Ts stance time s
Tf flight time s

defined in a similar way. Furthermore, we suppose
the following assumption.

Assumption 5. The foot does not bounce back nor
slip on the ground (inelastic impulsive impact).

A notion of phases is introduced: the stance phase
and the flight phase. When the leg touches the
ground the robot is said to be in the stance phase,
and when the leg is above the ground it is said to
be in the flight phase. The robot moves between
these two phases alternately. see Figure 2.
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Fig. 2. Subsequent one step of hopping(The robot
moves from left to right.)

In the stance phase, let us define the generalized
coordinate q as q := (r, θ, φ)T ∈ R × S

1 × S
1, the

generalized momentum p as p := (pr, pθ, pφ)T ∈
R

3, input u as u := (ρ, τ)T ∈ R
2 and the inertia

matrix as M(q) ∈ R
3×3. Then, the dynamics is

described as a Hamiltonian system in (1) with the
Hamiltonian H(q, p, u) represented as

H(q, p, u) =
1

2
pTM(q)−1p − mgr(1 − cos θ) +

+
1

2
Kl(r − r0)2

1

2
Kh(θ − φ)2 − uT

(

1 0 0
0 1 −1

)

q (22)

Let us consider the dynamics in the flight phase
as below.















ẍ = 0
z̈ = −g

Jlθ̈ + Jbφ̈ = 0

Jbφ̈ = Kh(θ − φ) + τf

(23)

Here the variables x and z represent the horizontal
and vertical positions of the center of mass and τf

is the control torque.

4.2 Problem setting

This section sets the control problem to get the
periodic gait based on (Hyon, 2005). Consider the



behavior in a flight phase and let J denote the
map from the initial state to the terminal state in
this phase. This map can be regarded as a discrete
map which connects two adjacent stance phases.
Then the desired map of J is given by

Js := (r, θ, φ, pr, pθ, pφ) 7→ (r,−θ,−φ,−pr, pθ, pφ)
(24)

We explain why such a map Js in (24) is desired.
Let us define the flow Φt in the stance phase with
no inputs, i.e., ρ = τ = 0 as Φt := (q(t0), p(t0)) 7→
(q(t0 + t), p(t0 + t)). From (22) and (24), the
Hamiltonian H(q, p, 0) is invariant with respect
to Js. Therefore Js and Φt satisfy

Js ◦ΦTs
= id (25)

If this equation holds, then a periodic gait is
generated.

The leg angle θ is the most important state vari-
able, because it has a direct effect to avoid falling.
However, it is difficult to control the variable θ in
the stance phase, since this robot has no foot. As
in (Hyon, 2005), we apply no input in the stance
phase, and try to control the variable θ to let
J = Js hold in the flight phase.

In (Hyon and Emura, 2004), dead-beat control is
used. It works well, but it requires the precise
knowledge of the plant system. Here we try to
use iterative learning control based on variational
symmetry with a special cost function given in
the following section. It will be shown to generate
an optimal flow in the flight phase without the
precise knowledge of the system.

4.3 Application of iterative learning control

Let us define the desired values of θ and θ̇ as
follows (we let t0 = 0 for simplicity in what
follows.)

θd := θ
∣

∣

t=Ts+Tf
= −θ

∣

∣

t=Ts
(26)

θ̇d := θ̇
∣

∣

t=Ts+Tf
= θ̇

∣

∣

t=Ts
(27)

As for the model mentioned above, energy dissi-
pation occurs at the touchdown. Let E− and E+

represent the energies just before the touchdown
and just after the touchdown. Then the variation
of the energy between them can be calculated as
below from (Hyon and Emura, 2004)

E+ − E− = −
mJl

2(Jl + mr2
0)

µ2
−

(28)

where µ− is defined as follows and is called the
energy dissipation coefficient.

µ− := vx
−

cosθ− +vz
−

sinθ−+
r0

Jl + mr2
0

pθ
−

(29)

Here vx
−

and vz
−

represent the velocity of the
center of mass. Suppose that the condition (30)

holds at the touchdown. This implies that there is
no energy transfer except for the control input.

µ− = 0 (30)

If the total mechanical energy is completely pre-
served, it is expected that periodic gait trajecto-
ries are autonomously generated. In fact, (Hyon
and Emura, 2004) implies that the condition (30)
is satisfied if the control objects (26) and (27) are
achieved, and the initial condition is appropriately
chosen (the way how to choose is described in
(Hyon and Emura, 2004).

Now we propose a novel cost function as

Γ(θ, θ̇, u) :=
Kθ

2
‖θ − (−R(θ))‖2

L2

+
Kθ̇

2
‖θ̇ −R(θ̇)‖2

L2
+

Ku

2
‖u‖2

L2
(31)

where Kθ, Kθ̇ and Ku represent appropriate pos-
itive constants. R is the time-reversal operator as
defined in Section 2. The first term in the right
hand side of (31) is expected to make Assump-
tion 3 approximately hold. It is expected that we
can generate an optimal trajectory such that it
satisfies (26) and (27) minimizing the L2 norm of
the control input. Furthermore, there is no energy
transfer except for the control input.

Let us recall the fact that gait trajectories are
essentially periodic, however ILC can not generate
periodic trajectories. Let us connect the stance
flow Φt and that generated from (31). Take this
connected trajectory as an one period of a periodic
gait trajectory. Therefore if (30) holds, we can
generate the optimal periodic trajectory.

Now, let us define input as u = τf and output
as y = θ. We can calculate the iteration law as
in (7) and (20). (Some details are omitted due to
limitations of space.)

u(2i−1) = u(2i−2) + 2R

(

Kθ(id + R)y(2i−2) + K
θ̇
(id −R)ÿ(2i−2))

)

(32)

u(2i) = (id − K(2i−2)Ku)u(2i−2) − K(2i−2)R

(

y(2i−1) − y(2i−2)

)

(33)

Here id represents the identity mapping.

5. SIMULATION

We apply the proposed iteration law of (32) and
(33) to the hopping robot introduced in the previ-
ous section. We proceed 50 steps of the learning al-
gorithm which means we execute 100 simulations.

Figure 3 shows that the cost function (31) almost
decreases at each experiment. This implies that
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the output trajectory converges to the optimal one
smoothly. We choose the initial input u(0) ≡ 0, so
Assumption 3 does not hold at first. This is prob-
ably the reason why the cost function increases in
the beginning of the learning procedure. Figure 4
and 5 show responses of θ and θ̇ at the last step in
solid lines and the initial trajectories correspond-
ing outputs with 0 input in dotted lines. These
figures show that both θ and θ̇ converge to the
trajectories satisfying (26) and (27). Furthermore
from Figure 6, the energy dissipation coefficient
(29) converges to zero as well.

6. CONCLUSION

In this paper, we have proposed an extension of
the iterative learning control based on variational

symmetry to use a pseudo adjoint of the time
derivative operator. This allows one to execute
iterative learning with optimal control type cost
function including time derivatives of the output
signal, which was not possible in the existing re-
sult. Application of this method to gait generation
problem of a hopping robot derives an optimal
gait trajectories without using precise knowledge
of the plant. Finally, numerical simulations have
demonstrated the effectiveness of the proposed
method.
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