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Abstract: This paper proposes an optimal gait generation framework based on a property of
Hamiltonian systems. A key technique is a unified method of learning control and parameter
tuning. The proposed method allows one to simultaneously obtain an optimal feedforward input
and an optimal tuning parameter for a plant system, which (at least locally) minimize a cost
function. It is a repetitive control type optimal gait generation framework, since its iteration
procedure is automatically executed and eventually an optimal periodic trajectory is generated.

1. INTRODUCTION

Recently, control of walking robots has become an ac-
tive research area. As the technology for walking robots
evolves, an optimization problem of gaits with respect
to energy consumption becomes increasingly important.
From this point of view, Passive Dynamic Walking (PDW)
studied by McGeer (McGeer [1990]) attracts attention.
Behavior analysis of PDW is studied by, e.g., (Osuka and
Kirihara [2000], Sano et al. [2003], Garcia et al. [1998]).
Energy-efficient walking control methods based on PDW
have been proposed by many researchers, e.g. (Goswami
et al. [1997], Spong [1999], Asano et al. [2004]). On the
other hand, we consider that physical property and learn-
ing control are useful tools to tackle this challenging prob-
lem. Hamiltonian systems (Maschke and van der Schaft
[1992]) have been introduced to represent physical systems
and they explicitly possess good properties for control
design. Iterative Learning Control (ILC) based on vari-
ational symmetry of Hamiltonian systems was proposed
in (Fujimoto and Sugie [2003]) and it allows one to solve a
class of optimal control problems by iteration of laboratory
experiments. Thanks to the symmetric property, it does
not require the precise knowledge of the plant model. Al-
though this method works well for some control problems,
there are mainly two difficulties to apply it to the optimal
gait generation problem. The first one is that this method
deals with a functional of the input and the output as
a cost function but it can not take the time derivative
of the output into account. This signal represents the
generalized velocity of mechanical systems, which severely
affects the walking motion. The other difficulty is that
the conventional learning method can not take discon-
tinuous state transitions into account. Such discontinuous
changes involved in general walking motions also have to
be considered. We have proposed an extended iterative
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learning control framework for the optimal gait generation
in (Satoh et al. [2008a]) to solve these problems.

Since our previous method is classified as ILC framework,
it requires a lot of laboratory experiments under the same
initial condition as well as many conventional results, e.g.
(Arimoto et al. [1984], Fujimoto and Sugie [2003]). This
paper proposes a repetitive control (Hara et al. [1988])
type optimal gait generation framework based on repet-
itive optimal control of Hamiltonian systems. Repetitive
optimal control proposed here unifies ILC (Fujimoto and
Sugie [2003]) and Iterative Feedback Tuning (IFT) (Fuji-
moto and Koyama [2008]) based on variational symmetry
of Hamiltonian systems, which is a modification of our
previous concept in (Satoh et al. [2008b]). While ILC is
to find an optimal feedforward input minimizing a given
cost function, IFT is to find optimal parameters of a given
feedback controller. The proposed framework is summa-
rized as follows. Firstly, we add a constraint by adding a
virtual potential energy to prevent the robot from falling.
Secondly, we execute the learning procedure in (Satoh
et al. [2008a]). The proposed technique restricts the motion
of the robot to a symmetric trajectory by the virtual con-
straint. Due to this additional constraint, we do not need
to repeat experiments under the same initial condition.
Thirdly, by regarding the potential gain for the constraint
as a tuning parameter, we execute IFT to mitigate the
strength of the virtual constraint automatically according
to the progress of learning control. Consequently, it is
expected to generate an optimal gait without constraint
eventually. Although this method requires one to apply
ILC and IFT simultaneously, both methods influence each
other and they regularly can not be used at a time. Our
previous report in (Satoh et al. [2008b]) did not take
the interference of ILC and IFT into account enough. To
solve this problem, the proposed method introduces an
extended system which again has variational symmetry.
The extended system instead of the original plant system
enables one to apply ILC and IFT simultaneously. Since



the proposed learning procedure is automatically executed
and eventually an optimal periodic trajectory is generated,
it is classified as repetitive control framework.

2. PRELIMINARIES

This section briefly refers to preliminary backgrounds.

2.1 Hamiltonian systems and variational symmetry

Our plant is a Hamiltonian system Σxt0 : U → Y : u 7→ y
with a controlled Hamiltonian H(x, u, ρ) with parameters

Σxt0 :



















ẋ = (J −R)
∂H(x, u, ρ)

∂x

⊤

, x(t0) = xt0

y = −
∂H(x, u, ρ)

∂u

⊤

. (1)

Here, x(t) ∈ R
n, u(t), y(t) ∈ R

m and ρ ∈ R
s describe the

state, the input and the output and adjustable parameters,
respectively. In this paper, we consider U, Y as Lm2 [t0, t1].
The structure matrix J ∈ R

n×n and the dissipation matrix
R ∈ R

n×n are skew-symmetric and symmetric positive
semi-definite, respectively. The variational system δΣxt0 of
the system Σxt0 represents the Fréchet derivative of Σxt0 .
According to (Fujimoto and Sugie [2003]), under certain
conditions the adjoint of the variational system (δΣxt0 )∗

has the following relationship with the variational system:

(δΣxt0 (u))∗(v) = R(δΣφt0 (w))R(v)

≈
1

ǫ
R ◦ (Σφt0 (w + ǫR(v)) − Σφt0 (w)), (2)

where φt0 and w denote appropriate initial condition and
input, respectively, ǫ represents sufficiently small positive
constant and R is a time-reversal operator defined by
R(u)(t − t0) = u(t1 − t) for ∀t ∈ [t0, t1]. This property
is called variational symmetry of Hamiltonian systems.
Approximation (2) implies that one can calculate the
input-output mapping of the adjoint by only using the
input-output data of the original system.

2.2 Iterative learning control (ILC) and iterative feedback
tuning (IFT) based on variational symmetry

This subsection refers to ILC in (Fujimoto and Sugie
[2003]) and IFT in (Fujimoto and Koyama [2008]). They
have common feature that they take advantage of vari-
ational symmetry of Hamiltonian systems mentioned in
subsection 2.1. The objective of ILC is to find an optimal
feedforward input which minimizes a given cost function,
while that of IFT is to find optimal parameters of a given
feedback controller. Firstly, let us mention ILC in more
detail. Consider the system Σxt0 in (1) and a cost function

Γ̂(u, y) : U × Y → R. This technique is based on the
steepest descent method. The gradient of the cost function
Γ̂ with respect to the control input u is calculated as

δΓ̂(u, y)(δu, δy) = 〈∇uΓ̂(u, y), δu〉U + 〈∇yΓ̂(u, y), δy〉Y

= 〈∇uΓ̂ + (δΣxt0 (u))∗(∇yΓ̂), δu〉U =: 〈∇uΓ(u), δu〉U ,
(3)

where Γ(u) = Γ̂(u,Σxt0 (u)). It follows from well-known
Riesz’s representation theorem that there exists functions

∇uΓ̂(u, y) and ∇yΓ̂(u, y) as above. The steepest descent
method implies that we should update the input u as

u(i+1) = u(i) −K(i)∇uΓ(u(i)), i = 0, 1, 2, · · · , (4)

where K(·)’s are appropriate positive matrices and i de-
notes the i-th iteration in laboratory experiment. In cal-
culating the gradient of the cost function ∇uΓ, the precise
knowledge of the plant system is generally required to
obtain (δΣxt0 (u))∗. However, ILC in (Fujimoto and Sugie
[2003]) takes advantage of variational symmetry and then
approximation (2) allows one to realize the update law (4)
without precise information of the plant system.

Secondly, IFT proposed in (Fujimoto and Koyama [2008])
is mentioned. In this method, tuning parameters of a given
feedback controller are considered to be virtual inputs
for a Hamiltonian system to utilize variational symmetry.
The algorithm is similar to that of ILC. We define the
zeroth-order hold operator h which maps the parameter
ρ ∈ R

s to a virtual input uρ ∈ Ls2[t
0, t1] as uρ(t) :=

(h(ρ))(t) ≡ ρ, ∀t ∈ [t0, t1]. Then the corresponding
output which induces variational symmetry (2) is given

by yρ := −∂H(x,u,ρ)
∂ρ

⊤

. Utilizing uρ and yρ, one can update

parameters in the similar manner (4) as in the case of ILC.

3. DESCRIPTION OF THE PLANT

Let us consider a full-actuated planar compass-like biped
robot with a torso depicted in Fig. 1. 1-period of walking

X

Y

m

mT

g

b

O 

ma

l
c

v1

v2

v3
L

L

q1q2

q3

Fig. 1. Model of the compass gait biped with a torso

describes the period between the take-off of one foot from
the ground and its subsequent landing. Table 1 shows
physical parameters and variables. In this paper, we define

Table 1. Parameters and variables

Notation Meaning

mT = 5.0kg torso mass
mL = 1.2kg leg mass
a = 0.2m length from mL to the ground
b = 0.2m length from the hip to mL

l = a + b total leg length
c = 0.12m length from the hip to mT

g = 9.81m/s2 gravity acceleration

q1 stance leg angle w.r.t vertical
q2 swing leg angle w.r.t vertical
q3 torso angle w.r.t vertical
v1 ankle torque
v2 torque applied between torso and swing leg
v3 torque applied between torso and stance leg

the input as u = (u1, u2, u3)⊤ := (v1 − v3,−v2, v2 +
v3)⊤ in order to simplify the input-output relation in the



Hamiltonian form (5) mentioned later. Furthermore, We
assume the following on this robot.

Assumption 1. The foot of the swing leg does not bounce
back nor slip on the ground at the collision.

Assumption 2. Transfer of support between the stance
and the swing legs is instantaneous.

Assumption 3. The foot-scuffing during the single support
phase can be ignored.

A typical mechanical system can be described by a Hamil-
tonian system (1) with the state x=(q⊤, p⊤)⊤ ∈ R

2m as

(

q̇
ṗ

)

=
((

Omm Im

−Im Omm

)

−
(

Omm Omm

Omm RD

))







∂H(x, u)

∂q

⊤

∂H(x, u)

∂p

⊤







y = −
∂H(x, u)

∂u

⊤

= q (5)

with the Hamiltonian H(x, u) = 1
2p

⊤M(q)−1p + V (q) −

u⊤q. Here q represents the configuration coordinate and
a positive definite matrix M(q) ∈ R

m×m denotes the
inertia matrix. The generalized momentum p ∈ R

m is
given by p := M(q)q̇. A positive semi-definite matrix
RD ∈ R

m×m denotes the friction coefficients, and a
scalar function V (q) ∈ R denotes the potential energy
of the system. The dynamics of the robot depicted in
Fig.1 is described as a typical mechanical system in (5)
with m = 3, the friction coefficients RD = O33. For the
details of M(q) and V (q), see (Satoh [2010]). At the end
of a walking period, a collision between a leg and the
ground causes a discontinuous change in angular velocities.
Assumptions 1 and 2 imply that there exists no double
support phase. Since the support and swing legs change
each other instantly, we have

q+ =

(

0 1 0
1 0 0
0 0 1

)

q− =: Cq−, (6)

where q− and q+ denote the angles just before and after
the collision, respectively. Although a transition mapping
can be derived by the conservation law of the angular
momentum, see (Grizzle et al. [2001]) for the detail.

Before the ILC method mentioned in Subsection 2.2 is
applied, feedback controllers are typically employed to the
control system in order to render the system asymptoti-
cally stable. In (Fujimoto and Sugie [2001]), a generalized
canonical transformation, which is a pair of feedback and
coordinate transformations preserving the Hamiltonian
structure of the form (1), is proposed. It is known that in
the case of a typical mechanical system in (5), a simple PD
feedback preserves the Hamiltonian structure (Fujimoto
and Sugie [2003]). Let us consider a PD controller

u = −KP q −KD q̇ + ū, (7)

where ū is a new input for ILC and KP ,KD ∈ R
3×3

are symmetric positive definite matrices. In what follows,
we consider the feedback system with a new Hamiltonian
Hc(x, ū, ρ) of the form (5) by a PD controller (7) with
sufficiently large gains KP and KD.

4. MAIN RESULTS

This section proposes an optimal periodic gait generation
framework via repetitive optimal control. Subsection 4.1

proposes a unified method of ILC and IFT of Hamiltonian
systems, which plays an important role in the proposed
framework. In order to take interference of ILC and IFT
into account, this method introduces an extended system
which again has variational symmetry. The extended sys-
tem instead of the original plant system enables one to
apply ILC and IFT simultaneously. In subsection 4.2, we
equip a constraint by adding a virtual potential energy.
Then, the concept of the proposed framework is outlined.
In subsection 4.3, we define a cost function and exhibit a
proposed algorithm.

4.1 Learning optimal control unifying ILC and IFT

Let us define the extended input ue by ue := (ū⊤, u⊤ρ )⊤ ∈

Ue = U×Uρ, the extended output ye by ye := (y⊤, y⊤ρ )⊤ ∈

Ye = Y ×Yρ, where Uρ, Yρ = Ls2[t
0, t1] and Hamiltonian He

by He(x, ue) := Hc(x, ū, uρ). Then we have the following

extended system ye = Σ
x

t0

e (ue):















ẋ = (J −R)
∂He(x, ue)

∂x

⊤

, x(t0) = xt0

ye = −
∂He(x, ue)

∂ue

⊤
. (8)

Since the extended system (8) has the form (1), it can be
easily proven that the system has variational symmetry
with certain conditions. Now we consider a cost function
Γ̂e(ue, ye) : Ue×Ye→R. From the definition of ue, we have

δue =

(

δū
δuρ

)

=

(

δū
δh(ρ) dρ

)

=

(

δū
h(dρ)

)

. (9)

The last equality follows from the linearity of the Fréchet
derivative and the operator h. From Eq. (9), The Fréchet
derivative of the cost function can be calculated as

δΓ̂e(ue, ye)(δue, δye)

=

〈(

id 0
0 h∗

)

(

∇ue
Γ̂e+(δΣ

x
t0

e (ue))
∗(∇ye

Γ̂e)
)

,

(

δū
dρ

)〉

U×Rs

=

〈(

∇ūΓ̂e
h∗(∇uρ

Γ̂e)

)

+

(

id 0
0 h∗

)

R(δΣ
ψ

t0

e (we))R(∇ye
Γ̂e)

,

(

δū
dρ

)〉

U×Rs

≈

〈(

∇ūΓ̂e
h∗(∇uρ

Γ̂e)

)

+

(

R 0
0 h∗

)

× (10)

(

Σ
ψ

t0

e (we+ǫeR(∇ye
Γ̂e))−Σ

ψ
t0

e (we)

ǫe

)

,

(

δū
dρ

)

〉

U×Rs

,

where id represents the identity mapping. In the last
approximation, the relation h∗R = h∗R∗ = (Rh)∗ = h∗ is
utilized (note that it follows from the definition of R that
R∗ = R). ψt0 and we := (w⊤, h(ρ)⊤)⊤ in (10) should be
chosen so that conditions for variational symmetry hold.

Remark 1. State trajectories under which, for ∀t ∈ [t0, t1],
q and q̇ satisfy

q(t) = q(t1− t+ t0), q̇(t) = −q̇(t1− t+ t0) (11)

represent time-symmetric motions with respect to the
middle point of time t = (t0 + t1)/2. We call trajecto-
ries satisfying the condition (11) symmetric trajectories.



Suppose a state trajectory φ corresponding an input v is
symmetric one. Then, in a typical mechanical system (5),
conditions for variational symmetry in (2) are satisfies with
sufficiently large PD gains under ψ = φ and w = v.

Suppose that the learning procedure is executed around
a symmetric trajectory and a trajectory in each experi-
ment approximately satisfies the condition (11), then the
proposed algorithm combining ILC and IFT is given by











xt0(2i+1) = xt0(2i)

ū(2i+1) = ū(2i) + ǫe(i)R(∇yΓ̂e(2i))

uρ(2i+1) = h(ρ(2i)) + ǫe(i)R(∇yρ
Γ̂e(2i))

(12)











































xt0(2i+2) = xt0(2i)

ū(2i+2) = ū(2i)−K(i)

(

∇ūΓ̂e(2i)+
1

ǫe(i)
R(y(2i+1)−y(2i))

)

ρ(2i+2) = ρ(2i) −Kρ(i)

(

∫ t1

t0
∇uρ

Γ̂e(2i)

+
1

ǫe(i)
R(yρ(2i+1) − yρ(2i)) dt

)

,

provided that the initial control input ū(0) ≡ 0 or an
appropriate initial input, the initial parameter ρ(0) and
the initial condition xt0(0) are appropriately chosen, re-
spectively. Here ǫe(·)’s denote sufficiently small positive
constants and appropriate positive definite matrices K(·)’s
and Kρ(·)’s represent gains, respectively.

The proposed algorithm implies that the learning proce-
dure needs two experiments to execute a single update in
(4). Firstly, in the (2i+1)-th iteration, we calculate the

output Σψt0 (we + ǫe∇ye
Γ̂e) in Eq. (10) (note that in this

case ψt0 corresponds to xt0(2i)). Then the input and output

signals of δΣ
x

t0

e (ue)
∗(∇ye

Γ̂e) can be calculated from the
last approximation in Eq. (10). With this information, the
gradient of the cost function with respect to the input
∇Γe(ue) with Γe(ue) := Γ̂e(ue,Σe(ue))(see also Eq. (3)) is
obtained. Finally, the input for the (2i+2)-th iteration is
given by Eq. (4) with these signals. The proposed method
allows one to simultaneously obtain an optimal feedfor-
ward input and an optimal tuning parameter.

Remark 2. In the proposed framework, we restrict the
motion of the robot to a symmetric trajectory by utilizing
a virtual constraint mentioned in subsection 4.2 so that
the algorithm (12) is valid. However, we have provided an
algorithm for more general cases in (Satoh [2010]).

4.2 Gait generation framework via repetitive optimal control

In the literatures (Grizzle et al. [2001], Hyon and Emura
[2005]), walking control methods using virtual constraints
based on the output zeroing control are proposed. In (Hyon
and Emura [2005]), particularly, they can achieve stable
symmetric walking gaits, by which they set the output
function y := q1 + q2 to zero by the output zeroing control
and keep the leg angles bounded by a leg exchange scheme.
As a consequence, they guarantee that the robot does not
fall and obtain symmetric gaits satisfying q1 + q2 = 0.

On the other hand, we have proposed a similar idea of
the virtual constraint to prevent the robot from falling,
but we do not use the output zeroing control in (Satoh

et al. [2008b]). There are two reasons: one is that the
output zeroing control requires the precise knowledge of
the plant system and the other is that such constraints
consume a lot of control energy. Instead, we have equipped
a virtual potential energy Pc := kc

2 (q1 + q2)2 to produce a
similar effect to (Hyon and Emura [2005]). Here, the gain
parameter kc represents the constraint strength. We let kc
sufficiently large at the beginning of learning steps so that
the trajectory of the robot is restricted to a symmetric one,
i.e. q1+q2 = 0 holds. Due to (Hyon and Emura [2005]), it is
expected that the robot does not fall. As advantages of the
method, firstly, it does not require the model parameters
of the plant system, since the potential energy Pc can be
generated by a simple feedback controller

u = −KP q −KDq̇ + ū− kcAcq, Ac :=

(

1 1 0
1 1 0
0 0 0

)

. (13)

The feedback system is depicted in Fig. 2, where qr and q̇r

represent reference signals for PD feedback, respectively.
The controller in (13) corresponds to the case where qr ≡
q̇r ≡ 0. Secondly, after adding the potential energy, the

++

-

-

Σ

KD
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+

+-

+

+

q

q
.uu

qr

q
.
r

Acck

Fig. 2. Feedback system

plant system preserves the Hamiltonian structure and the
constraint parameter kc is explicitly contained in a new
Hamiltonian. The controller (13) converts the dynamics
of the robot into another Hamiltonian system of the form
(5) with a new Hamiltonian H̄(x, ū, kc), a new structure
matrix J̄ and a new dissipation matrix R̄ as

H̄ =
1

2
p⊤M(q)−1p+ V (q) +

1

2
q⊤(KP + kcAc)q − ū⊤q,

J̄ =
(

O33 I3
−I3 O33

)

, R̄ =
(

O33 O33

O33 KD

)

. (14)

By regarding kc as a tuning parameter, we execute the
proposed learning technique unifying ILC and IFT in
subsection 4.1, in order to adjust the constraint strength
by IFT, and simultaneously generate a walking trajectory
by ILC. The concept of the proposed gait generation
framework is summarized as follows.

Step 1 : Add a virtual potential energy to restrict the
motion of the robot to a symmetric trajectory. Then, let
constraint parameter kc sufficiently large to expect that
the robot does not fall.

Step 2 : By utilizing optimal learning control scheme
proposed in subsection 4.1, ILC generates an optimal
walking gait and simultaneously, IFT mitigates the
constraint parameter automatically according to the
progress of learning control.

Step 3 : Repeat Step 2 every one step cycle.

It is expected that an optimal periodic gait is generated
without constraint eventually. The feature of the frame-
work is that the robot improves its walk keeping on walk-
ing, because it does not fall due to Step1. From this aspect,



our method is classified as repetitive control framework
rather than ILC one, so we call it gait generation frame-
work via repetitive optimal control. It also differs from the
conventional methods using virtual constraints in that it
automatically optimizes the strength of the constraints.

4.3 Derivation of the iteration law

Let us consider the following cost function Γ̂(y, ẏ, ū, yρ, uρ):

1

2

∫ t1

t0

(ye(τ)−CeR(ye)(τ))⊤Λye(τ)(ye(τ)−CeR(ye)(τ)) dτ

+
1

2

∫ t1

t0

Fv(ẏe(τ)−ve,ref )⊤Λẏe
(τ)Fv(ẏe(τ)−ve,ref ) dτ

+
1

2

∫ t1

t0

ue(τ)⊤Λueue(τ) dτ =: Γ̂e(ye, ẏe, ue), (15)

where Ce := diag{C, 0}, Λye
(t) := diag{ν1(t)Λy, γyρ

},
Λẏe

(t) := diag{ν2(t)Λẏ, 0} and Λue
:= diag{Λū, γuρ

}

∈ R
4×4 and ve,ref := diag{vref , 0} ∈ R

4. Appropriate
positive definite matrices Λy,Λẏ,Λū ∈ R

3×3, and positive
constants γyρ

and γuρ
represent weight matrices and coef-

ficients, respectively. The first term in (15) is a necessary
condition for a periodic trajectory such that q1(t0) ≡
q2(t1) and q2(t0) ≡ q1(t1). Although another necessary
condition with respect to q̇ can be utilized as in (Satoh
et al. [2008a]), where initial angular velocities are equiva-
lent to those just after touch down, it is not equipped here
for simplicity. In the second term, vref ∈ R

3 represents a
constant reference angular velocity, ν1(t), ν2(t) ∈ R denote
filter functions defined respectively by

ν1(t) :=







1

2

(

1−cos

(

t0 + ∆t − t

∆t
π

))

(t0≤ t≤ t0+∆t)

0 (t0+∆t<t≤ t1)

ν2(t) :=














































0 (t0 ≤ t<
t1−t0

2
−∆t̄)

1

2

(

1−cos

(

−
t1−t0

2
+ ∆t̄ + t

∆t̄
π

))

(
t1−t0

2
−∆t̄≤ t<

t1−t0

2
)

1

2

(

1−cos

(

t1−t0

2
+ ∆t̄ − t

∆t̄
π

))

(
t1−t0

2
≤ t<

t1−t0

2
+∆t̄)

0 (
t1−t0

2
+∆t̄≤ t≤ t1)

,

where design parameters ∆t and ∆t̄ denote positive
constants. Figure 3 illustrates ν1(t) and ν2(t). For any

t
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Fig. 3. Filter functions ν1 and ν2

ζ ∈ R
4, a penalty function Fv : R

4 → R
4 is defined as

[Fv(ζ)]
i =

{

kFv
(ζi)2 if ζi < 0

0 otherwise
, (i = 1, 2, 3, 4), (16)

where an appropriate positive constant kFv
represents the

strength of penalty. The second term in (15) encourages

the robot to achieve an appropriate velocity in the middle
of walking. As a consequence, it is aimed at specifying
the walking direction (forward or backward) and a rough
walking speed, and preventing the robot from stopping
during the learning. The last term is to minimize the
control input and the strength of the virtual constraint,
respectively.

Due to the virtual constraint equipped in Subsection 4.2, it
is supposed that the learning procedure is executed around
a symmetric trajectory. We summarize the proposed pro-
cedure. For the details of derivation, see (Satoh [2010]).

Step 0 : Set appropriately Λy,Λẏ, Λū, γyρ
, γuρ

, ∆t, ∆t̄
and kFv

. Set the initial input ū(0) appropriately (or set
ū(0) ≡ 0) and a constant reference angular velocity vref .
Let the constraint parameter kc(0) sufficiently large and
let the robot start walking under an appropriate initial
condition xt0 . Set i = 0. Then go to Step 1.

Step 2i+ 1 : During the (2i+1)-th walking cycle, one
utilizes the following controller:

u = −KP q−KDq̇−uρ(2i+1)Acq+ ū(2i+1), Ac :=

(

1 1 0

1 1 0

0 0 0

)

.

Here the feedback gain for the virtual constraint uρ(2i+1)

and the feedforward control input ū(2i+1) are given by
{

ū(2i+1) = ū(2i) + ǫe(i)R(∇yΓ̂e(2i))

uρ(2i+1) = uρ(2i) + ǫe(i)R(∇yρ
Γ̂e(2i))

with a sufficiently small positive constant ǫe(i) and

∇yΓ̂e(2i) = (id−RC)ν1Λy(id−CR)(y(2i))

−
d

dt
((δFv(ẏ(2i)−vref))

∗ν2ΛẏFv(ẏ(2i)−vref )),

∇yρ
Γ̂e(2i) = γyρ

yρ(2i).

Step 2i+ 2 : During the (2i+2)-th walking cycle, one
utilizes the following controller:

u = −KP q −KD q̇ − kc(2i+2)Acq + ū(2i+2).

Here the feedback gain kc(2i+2) which represents the
strength of the virtual constraint and the feedforward
control input ū(2i+2) are given by


























ū(2i+2) = ū(2i)−K(i)

(

Λūū(2i)+
1

ǫe(i)
R(y(2i+1)−y(2i))

)

kc(2i+2) = kc(2i) −Kρ(i)

(

γuρ
kc(2i)(t

1 − t0)

+
1

ǫe(i)

∫ t1

t0
R(yρ(2i+1) − yρ(2i)) dt

)

,

where appropriate positive definite matrix K(i) and
positive constant Kρ(i) represent learning and tuning
gains, respectively. Set i = i+1. Then, go to Step 2i+1.

5. NUMERICAL EXAMPLE

We apply the proposed algorithm to the compass gait
biped with a torso depicted in Fig. 1. The following PD
feedback gains are utilized: KP = diag(4, 4, 6) and KD =
diag(2, 2, 4). In this simulation, we assign a reference
velocity only to q̇1 as ṽref = (0.5, 0, 0)⊤, since q̇1 mainly
affects the walking velocity. We utilize the following design
parameters: Λy = diag(20, 20, 20), Λẏ = diag(10, 0, 0),
γyρ

= 1 × 10−2, Λū = diag(1 × 10−4, 5 × 10−5, 5 ×

10−5), γuρ
= 1 × 10−2, ∆t = 5.0 × 10−3, ∆t̄ = 0.1,



kFv
= 0.25, K(·) = diag(3, 3, 3), Kρ(·) = 1 and ǫe(·) = 1.

We proceed 500 steps of the learning procedure with
kc(0) = 30, (q⊤t0 , q̇

⊤

t0) = (−0.18, 0.20, 0, 1.1, 0.5, 0) and

ū(0)(t) ≡ (0.5,−1.5)⊤. Figure 4 shows the history of
the cost function (15) along the walking steps. Since it
monotonically decreases and then converges to a constant
value, it implies that at least a local minimum of the
cost function is achieved smoothly. Figure 5 shows the
history of the constraint parameter kc along the walking
steps. It implies that the strength of constraint is adjusted.
Although kc does not converge to zero, it plays a role of a
stabilizing feedback controller. Figures 6 and 7 represent
the animations of the robot in the first and the last 5 steps,
respectively. They show that at the beginning the robot
walks awkwardly and then it improves its walk. Figure 8
shows that the phase portrait of q-q̇ forms closed orbits. It
implies that a periodic trajectory is generated.
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6. CONCLUSION

This paper has proposed a repetitive control type optimal
gait generation framework. The proposed unified method
of ILC and IFT of Hamiltonian systems plays a key
role and it allows one to simultaneously obtain optimal
feedforward input and tuning parameter, which minimize
a cost function.
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