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Abstract— This paper proposes an optimal gait generation
framework using virtual constraint and learning optimal con-
trol. In this method, firstly, we add a constraint by a virtual
potential energy to prevent the robot from falling. Secondly,
we execute iterative learning control (ILC) to generate an opti-
mal feedforward input. Thirdly, we execute iterative feedback
tuning (IFT) to mitigate the strength of the virtual constraint
automatically according to the progress of learning control.
Consequently, it is expected to generate an optimal gait with-
out constraint eventually. Although existing ILC frameworks
require a lot of experimental data under the same initial condi-
tion, the proposed method does not need to repeat experiments
under the same initial condition because the virtual constraint
restricts the motion of the robot to a symmetric trajectory.
Furthermore, it does not require the precise knowledge of the
plant system. Finally, some numerical simulations demonstrate
the effectiveness of the proposed method.

I. I NTRODUCTION

In the recent active research and development regarding
humanoid robots, a lot of techniques to realize dynamic
bipedal walking have been proposed. Many conventional
frameworks for bipedal walking control are classified as
motion planning based on the zero moment point (ZMP)
based control. Dynamic walking control based onpassive
dynamic walking[1] attracts attention, e.g., [2], [3], [4],
as is antithetical to the ZMP based control with respect to
the energy consumption. As an alternative, walking control
methods using virtual constraint based on the output zeroing
control are proposed [5], [6].

In [7], [8], we have studied optimal gait generation in
terms of the energy efficiency via iterative learning control
(ILC) proposed in [9] which utilizes a property of Hamilto-
nian systems. Thanks to the advantage of the method, our
technique does not require precise information about the
plant system. Instead, existing ILC frameworks require a lot
of laboratory experiments under the same initial condition. It
is sometimes difficult to repeat experiments under the same
initial condition, because it is difficult to realize the desired
initial velocity of the mechanical systems including walking
robots.

To solve the problem, in this paper, we propose an optimal
gait generation framework using virtual constraint and learn-
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ing optimal control. The proposed method is summarized
as follows. Firstly, we add a constraint by adding a virtual
potential energy to prevent the robot from falling. Secondly,
we execute the learning procedure as is proposed in our
previous works [7], [8]. The proposed technique restricts
the motion of the robot to a symmetric trajectory by the
virtual constraint. Due to this, it does not need to repeat
experiments under the same initial condition. Thirdly, by
regarding the potential gain for the constraint as a tuning
parameter, we execute iterative feedback tuning (IFT) to
mitigate the strength of the virtual constraint automatically
according to the progress of learning control. Consequently,
it is expected to generate an optimal gait without constraint
eventually. Let us note that the proposed method differs
from the existing techniques using virtual constraint in that
our method automatically optimizes the strength of the
constraint. Finally, some numerical simulations demonstrate
the effectiveness of the proposed method.

II. L EARNING OPTIMAL CONTROL OFHAMILTONIAN

SYSTEMS

This section refers to some of the basic results about
learning optimal control of Hamiltonian systems, particularly
about iterative learning control (ILC) and iterative feed-
back tuning (IFT) based on variational symmetry originally
proposed in [9] and [10].

A. Variational symmetry of Hamiltonian systems

Consider a Hamiltonian system with dissipation and a
controlled HamiltonianH(x, u, t) described by

Σ :











ẋ = (J − R)∂H(x,u,t)
∂x

T
, x(t0) = x0

y = −∂H(x,u,t)
∂u

T
. (1)

Herex(t) ∈ R
n, u(t), y(t) ∈ R

m describe the state, the input
and the output, respectively. The structure matrixJ ∈ R

n×n

and the dissipation matrixR ∈ R
n×n are skew-symmetric

and symmetric positive semi-definite, respectively. In this
paper, we consider behaviors of the system (1) at a finite
time interval [t0, t1] and often describe the system asΣ :
Lm

2 [t0, t1] → Lm
2 [t0, t1] : u 7→ y. The variational system

dΣ of the systemΣ represents the Fréchet derivative of
Σ. The following theorem with respect todΣ holds. This
property is calledvariational symmetry of Hamiltonian
control systems.

Theorem 1: [9] Consider the Hamiltonian system(1).
Suppose thatJ and R are constant and that there exists



a nonsingular matrixT ∈ R
n×n satisfying

J = −TJ T−1, R = TR T−1 (2)

∂2H(x, u, t)

∂(x, u)2
=

(

T 0
0 I

)

∂2H(x, u, t)

∂(x, u)2

(

T−1 0
0 I

)

.

Suppose moreover thatJ−R is nonsingular. Then the adjoint
of the variational system(dΣ)∗ has the time-reversal state-
space realization of the variational systemdΣ.

Remark 1:Suppose the Hessian of the Hamiltonian with
respect to(x, u) is satisfying

∂2H(x, u, t)

∂(x, u)2
(t − t0) =

∂2H(x, u, t)

∂(x, u)2
(t1 − t), ∀t ∈ [t0, t1].

Then, under the appropriate initial condition ofΣ, Equation
(3) holds

(dΣ(u))∗(v) ≈
1

ǫ
R ◦ (Σ(u + ǫR(v)) − Σ(u)), (3)

whereǫ represents sufficiently small positive constant andR
is a time-reversal operator defined byR(u)(t−t0) = u(t1−t)
for ∀t ∈ [t0, t1].

Equation (3) implies that one can calculate the input-
output mapping of the adjoint by only using the input-output
data of the original system. The literature [9] says that one
can utilize the property (3) in considering general mechanical
systems.

B. Iterative learning control and iterative feedback tuning

We review some results of ILC in [9] and IFT in [10]. They
have common feature that they take advantage of variational
symmetry of Hamiltonian systems. The objective of ILC
is to find an optimal feedforward input which minimizes
a given cost function, while that of IFT is to find optimal
parameters of a given feedback controller. Figure 1 illustrates
the difference of the concept between them.

Plant System

y = Σ(u)

Feedback
Controller

Output y(t)

Plant System

y = Σ(u)

Input u(t) Output y(t)

Iterative Learning Control Iterative Feedback Tuning

Fig. 1. Illustrations of ILC and IFT

Firstly, let us mention ILC in more detail. Consider the
system Σ in (1) and a cost functionΓ : L

m
2 [t0, t1] ×

L
m
2 [t0, t1] → R. This technique is based on the steepest

descent method. The gradient of the cost functionΓ with
respect to the control inputu is calculated as

dΓ(u, y)(du,dy)=〈∇uΓ(u, y),du〉+〈∇yΓ(u, y),dy〉

= 〈∇uΓ(u, y)+(dΣ(u))∗∇yΓ(u, y),du〉 =: 〈Γ′

u,du〉.(4)

Here dΓ(u, y) represents the Fréchet derivative ofΓ and
note thatdy = dΣ(u)(du). It follows from well-known
Riesz’s representation theorem that there exists operators

∇uΓ(u, y) and ∇yΓ(u, y) as above. The steepest descent
method implies that we should update the inputu such that

u(i+1) = u(i) − K(i)Γ
′

u

∣

∣

∣

u=u(i),y=y(i)

, i = 0, 1, 2, · · · , (5)

whereK is an appropriate positive gain andi denotes the
i-th iteration in laboratory experiment. In calculatingΓ′

u, one
can calculate∇uΓ(u, y) and∇yΓ(u, y) in (4) by information
of u and y. However, the precise knowledge of the system
is generally required to calculate(dΣ(u))∗. This method
utilizes variational symmetry (3) to solve this problem as
mentioned in Remark 1.

Secondly, IFT proposed in [10] is mentioned in more
detail. We consider feedback controllersu = C(ρ, x) under
which Hamiltonian structure is preserved, i.e., the closed
loop system is again Hamiltonian system. Hereρ ∈ R

k

represents gain parameter. For example, a class of such
feedback controllers is the generalized canonical transfor-
mation [11]. In this method, gain parameters of a given
feedback controller are considered to be virtual inputs for
a Hamiltonian system to utilize variational symmetry. The
algorithm is similar to that of ILC. We define the zeroth-
order hold operator which maps the parameterρ ∈ R

k to the
Lk

2 space in order to define the virtual input.
Definition 1: Considerξ ∈ R

k andw ∈ Lk
2 . We define an

operatorh satisfying the following equation as the zeroth-
order hold operator.

h : R
k → Lk

2 : ξ 7→ w

w(t) =

{

ξ (t0 ≤ t ≤ t1)

0 (t < t0, t > t1)
(6)

When we define the virtual input asuρ := h(ρ). Then the
corresponding output which induces variational symmetry
(3) is given by

yρ := −
∂H̄(x, t, ρ)

∂ρ

T

,

whereH̄ denotes the Hamiltonian of the closed loop system.
Utilizing uρ andyρ, one can update parameters in the similar
manner (5) as in the case of ILC.

Remark 2:A typical mechanical system can be described
by a Hamiltonian system

Σ :















(

q̇
ṗ

)

=

(

0 I
−I −D

)





∂H(q,p,u)
∂q

T

∂H(q,p,u)
∂p

T





y = −∂H(q,p,u)
∂u

T
= q

(7)

with the Hamiltonian

H(q, p, u) =
1

2
pTM(q)−1p + V (q) − uTq,

where q, p ∈ R
m and a positive matrixM(q) denotes the

inertia matrix, a positive semidefinite matrixD denotes the
friction coefficients and a scalar functionV (q) denotes the
potential energy of the system. It is proven that we can
always apply ILC and IFT methods mentioned in this section
to the system described in (7). See [9], for the detail.



TABLE I

PARAMETERS AND VARIABLES

Notation Meaning Unit
mH hip mass kg
m leg mass kg
a length fromm to ground m
b length from hip tom m
l = a + b total leg length m
g gravity acceleration m/s2

θ1 stance leg angle w.r.t vertical rad
θ2 swing leg angle w.r.t vertical rad
u1 ankle torque Nm
u2 hip torque Nm

III. O PTIMAL GAIT GENERATION VIA LEARNING

OPTIMAL CONTROL USING VIRTUAL CONSTRAINT

This section proposes our framework. Firstly, we refer to a
constraint by adding virtual potential energies, which plays
an important role in our method. Then, we define a cost
function and derive the learning iteration laws.

A. Description of the plant

We consider a fully actuated planar biped robot called the
compass gait biped[12] depicted in Fig. 2 and afterward we
also consider the one with a torso depicted in Fig. 6 as a more
general walking robot model. Table I shows physical param-
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Fig. 2. The compass gait biped

eters and variables. Assumptions on this robot conforms [12]
and they are omitted here. We use number of notations with

TABLE II

SOME NOTATIONS

Notation Meaning
q := (q1, q2)T = (θ1, θ2)T generalized coordinate
p := (p1, p2)T generalized momentum
x := (qT, pT)T state
θ := (θ1, θ2)T angles of legs
θ̇ := (θ̇1, θ̇2)T angular velocities of legs
·
−(+) just before (after) transfer

respect to the state. Table II summaries them. Here is a new
input defined as̄u := (ū1, ū2)

T = (u1 + u2,−u2)
T. Then,

the dynamics of this robot is described by a Hamiltonian
system (7) with the Hamiltonian

H(q, p, ū) =
1

2
pTM(q)−1p + V (q) − ūTq (8)

and the outputy = q, where a positive definite matrix
M(q) ∈ R

2×2 denotes the inertia matrix and a scalar
function V (q) ∈ R denotes the potential energy of the
system. The details are as follows

M(q) =

(

mH l2 + ma2 + ml2 −mbl cos(q1 − q2)
−mbl cos(q1 − q2) mb2

)

V (q) = {(mH l + ma + ml) cos q1 − mb cos q2}g. (9)

Note that using (9), the generalized momentum is described
as p = M(q)q̇. Following the law of conservation of the
angular momentum, a transition equation is obtained. The
detail of the equation conforms [12], so it is omitted here.

B. Constraint by adding virtual potential energies

In the literatures [5], [6], walking control methods using
virtual constraint based on the output zeroing control are pro-
posed. In [6], especially, they can achieve stable symmetric
walking gaits using another property of Hamiltonian systems
than that used in this paper. They set the output function
y = h(x) = q1 + q2 to zero by the output zeroing control
and keep the leg angles bounded by a leg exchange scheme.
As a consequence, they guarantee that the robot does not fall
and obtain symmetric walking gaits satisfyingq1 + q2 = 0.

On the other hand, we use a similar concept of the virtual
constraint to prevent the robot from falling, but do not use the
output zeroing control. There are two reasons: one is that the
output zeroing control requires the precise knowledge of the
plant system and the other is that such constraints consume a
lot of control energy. We add a virtual potential energy such
as Equation (10) to produce a similar effect to [6]

Pc :=
Kc

2
(q1 + q2)

2. (10)

Here, the gain parameterKc represents the constraint
strength. We makeKc sufficiently large at the beginning
of the learning steps so that the trajectory of the robot is
restricted to symmetric one, i.e.q1 + q2 = 0 holds. Due to
[6], it is expected that the robot does not fall. The advantages
of this method instead of the output zeroing are as follows.
Firstly, it does not require the model parameters of the plant
system, since the potential energy (10) can be generated by a
simple proportional feedback−Kc(q1 + q2). Secondly, after
adding the potential energy, the plant system preserve the
Hamiltonian structure and the constraint parameterKc is
explicitly contained in the Hamiltonian. By regardingKc as
a tuning parameter, we try to adjust the constraint strength
by IFT mentioned in Section II-B. The idea of the proposed
framework is the following.

Step1 : Add a virtual energy to restrict the motion of
the robot to a symmetric trajectory. Then, make
constraint parameterKc sufficiently large to expect
that the robot does not fall.

Step2 : Execute ILC procedure to generate an optimal
walking gait as our previous work in [7].

Step3 : Mitigate the constraint parameter by IFT automat-
ically according to the progress of learning control.



Step4 : As a result, it is expected that an optimal gait is
generated without a constraint eventually.

The feature of the proposed method is that the robot
improves his walk keeping on walking, because the robot
does not fall due to Step1. Our method also differs from
the past proposed ones using virtual constraint in that it
automatically optimizes the strength of the constraint.

C. Derivation of the iteration laws

Let us consider a Hamiltonian̄H of the closed loop system
adding the virtual potential energy (10) by the proportional
feedback−Kc(q1 + q2) as bellow

H̄(q, p, ū,Kc) =
1

2
pTM(q)−1p + V (q)

−ūTq +
Kc

2
(q1 + q2)

2.

The output which induces variational symmetry (3) with
respect tōu for the closed loop Hamiltonian system is given
by

y := −
∂H̄(q, p, ū,Kc)

∂ū
= q.

In what follows, the operator̄u 7→ y is described as̄Σ
and each elements of the outputy is describedy1 and y2,
respectively, that is,y1 = q1 and y2 = q2. We define the
virtual input uc to mitigate the constraint gain parameter
Kc as uc := h(Kc). Then the corresponding output which
induces variational symmetry is given by

yc := −
∂H̄(q, p, ū,Kc)

∂Kc

= −
(q1 + q2)

2

2
. (11)

In what follows, the operatoruc 7→ yc is described asΣc.
We propose a cost function as follows

Γ(y, ū, uc) :=

1

2

∫ t1

t0

(

y(τ) − CR(y)(τ)
)T

Λy(τ)
(

y(τ)−CR(y)(τ)
)

dτ

+
γū

2
‖ū‖2

L2
+

γuc

2
‖uc(y1 + y2)‖

2
L2

+
γc

2
‖uc‖

2
L2

, (12)

where the matrixC which exchanges the support and the
swing leg angles is given by

C :=

(

0 1
1 0

)

.

Positive constantsγū, γuc
and γc represent weighting coef-

ficients for each terms, respectively. A symmetric positive
definite matrixΛy(t) represents the weighting function de-
fined by

Λy(t) := diag (γy1
Λt(t), γy2

Λt(t)) ,

Λt(t) :=











1
2

(

1 − cos
(

t0+∆t−t
∆t

π
))

(t0 ≤ t ≤ t0+ ∆t)

0 (t0+ ∆t < t ≤ t1),

(13)

where positive constantsγy1
, γy2

represents weighting coef-
ficients fory1 andy2, respectively.∆t denotes a sufficiently
small positive constant. Equation (13) implies thatΛt(t)
plays a role of a weight function with respect to time to

t
t1t0

Λt

1

t0
∆t+

0

Fig. 3. Illustration ofΛt

evaluatey(t) − CR(y)(t) at only aroundt = t0. Fig. 3
illustrates Λt(t). The physical meanings of each term of
the cost function (12) are as follows. The first term is a
restraint condition to satisfy a necessary condition for 1
period-periodic trajectories such thatθ1(t

1) ≡ θ2(t
0) and

θ2(t
1) ≡ θ1(t

0). Note that just after the collision between
a leg and the ground, leg angles do not change and leg
exchange between the support leg and the swing leg arises
instantaneously, i.e.θ+

1 ≡ θ2(t
1) and θ+

2 ≡ θ1(t
1), so the

following relation holds for 1 period-periodic trajectories
θ1(t

1) ≡ θ2(t
0) and θ2(t

1) ≡ θ1(t
0) (see also Fig. 4). The

t0

t0

1
1

1
0

2
0

2
1

t1

t1

t2

t2

Support

Support

Swing

Swing

Fig. 4. Illustration of the restraint condition of the cost function

second and the third terms are to minimize feedforward input
ū and the feedback inputKc(y1 + y2) which is applied for
the virtual potential energy, respectively. The last term is to
optimize the strength of the virtual constraint.

In our previous result [8], we also considered a necessary
condition with respect to angular velocitieṡq in the cost
function. The condition is that initial angular velocities
are equivalent to velocities just after touch down. We do
not consider the condition in this paper, because it makes
iteration law more complex. It is our future work. For another
choice of cost function, we can deal with functionals with
respect to the joint angleθ, its velocity θ̇ and the control
input u.

We derive the updating law for the feedforward inputs for
Steps 2 in the summary mentioned in the Section III-B. Let
us calculate the Fréchet derivative of the cost function (12)
as follows

dΓ(y, ū, uc)(dy,dū) = 〈Λy(y − CR(y)),dy − CR(dy)〉

+〈γū,dū〉 + 〈γuc
u2

c(1, 1)y, (1, 1)dy〉.



We have the gradient of the cost function (12) with respect
to ū corresponding to Eq. (4) as follows

Γ′

ū := ∇ūΓ(ū,y)+(dΣ̄(ū))∗∇yΓ(ū,y), (14)

∇ūΓ = γūū,

∇yΓ = (id −RC)Λy(id −RC)(y) + γuc
u2

c

(

1 1
1 1

)

y

By using Eqs. (3) and (14), the updating law for the feed-
forward input is given by

ū(2i+1) = ū(2i) + ǫ1(2i)R
(

∇yΓ(2i)

)

(15)

ū(2i+2) = ū(2i) − K1(2i)

(

∇ūΓ(2i)

+
1

ǫ1(2i)

R(y(2i+1) − y(2i))
)

(16)

provided that the initial input̄u(0) ≡ 0 and the first initial
condition x0

(0) is appropriately chosen. Hereǫ1(·) denotes
a sufficiently small positive constant and an appropriate
positive definite matrixK1(·) represents a gain. The pair
of iteration laws (15) and (16) implies that this learning
procedure needs two experiments to execute a single update
step in the steepest decent method. In the (2i+1)-th iteration,
we can get the output signal ofΣ

(

ū + ǫR(v)
)

in Eq. (3)
and then we can calculate the input and output signals of
(dΣ)∗ by using variational symmetry (3). The input for the
(2i+2)-th iteration is generated by Eq. (5) with these signals.

Here we derive the updating law for the tuning parameter.
Note that the third term of the cost function (12) is calculated
as γuc

2 ‖uc(y1 + y2)‖
2
L2

= γuc
‖uc‖

2
L2
‖yc‖L2

, we have
Fréchet derivative of the cost function as follows

dΓ(y, ū, uc)(dyc,duc) =

〈γcuc,duc〉 + 〈2γuc
|yc|uc,duc〉 + 〈γuc

u2
csign(yc),dyc〉

+〈γy1
Λt(y1 −R(y2)) + γy2

Λt(y2 −R(y1))

,dy1 + dy2 −R(dy1) −R(dy2)〉
⊛

(17)

Using dyc = −(y1 + y2)(dy1 + dy2) from Eq. (11), let us
calculate the gradient with respect toyc from the rest part
⊛ in Eq. (17). For simplicity, we considerγy1

= γy2
in Eq.

(13) in what follows. Then, we have

⊛ = 〈(id −R)γy1
Λt(id −R)(y1 + y2),dy1 + dy2〉. (18)

Since∆t in Eq. (13) is sufficiently small, we approximate
the left term in the inner product in Eq. (18) by

(id −R)γy1
Λt(id −R)(y1 + y2)(t)

≈











2(y1(t
0) + y2(t

0)) t = t0

0 t0 < t < t1

−2(y1(t
1) + y2(t

1)) t = t1
. (19)

Note that θ1 + θ2 = 0 holds when the swing leg of the
compass gait biped touches down the ground, i.e.y1(t

0) +
y2(t

0) = y1(t
1) + y2(t

1) = 0 holds. As a consequence, we
have the gradient of the cost function (12) with respect to

the constraint parameter as

dΓ(y, ū, uc)(dyc,duc) (20)

= 〈γcuc − 2γuc
ucyc,duc〉 + 〈−γuc

u2
c ,dΣc(uc)(duc)〉

= 〈h∗

(

γcuc − 2γuc
ucyc − (dΣc(uc))

∗(γuc
u2

c)
)

,dKc〉,

using |yc| = −yc and sign(yc) = −1 by Eq. (11) anduc =
h(Kc). We refer to the fact showed in [10] that for anyv ∈
L2[t

0, t1], the following equation holds

h∗v =

∫ t1

t0
v(τ)dτ. (21)

By Eqs (3), (20) and (21), the updating law for the constraint
parameter is given by

Kc(2i+1) = Kc(2i) − ǫ2(2i)γuc
Kc

2
(2i) (22)

Kc(2i+2) = Kc(2i)−K2(2i)

∫ t1

t0
γcKc(2i)−2γuc

Kc(2i)yc(2i)dτ

−
K2(2i)

ǫ2(2i)

∫ t1

t0
yc(2i+1) − yc(2i)dτ. (23)

The derivation is similar to that of the iteration laws (15)
and (16), so it is omitted here.

Here let us summarize the proposed learning procedure.

Step 0: Set the initial control input as̄u(0) ≡ 0 and make
the constraint parameterKc(0) sufficiently large.
Let the robot start walking under an appropriate
initial condition x0.

Step 2i+1:While 2i+1 period, one utilizes the control input
derived by (15) under the constraint gain derived
by (22).

Step 2i+2:While 2i+2 period, one utilizes the control input
derived by (16) under the constraint gain derived
by (23).

In our framework, there are some open parameters, that
is, ǫ1, ǫ2, K1, K2, γy1

, γy2
, γū, γuc

and γc. First of all,
all of them have to be positive. We should chooseǫ1 and
ǫ2 small enough so that approximation in Eq.(3) holds. The
parametersK1 andK2 are the step parameters in the steepest
decent method. Generally we setK1 and K2 large in the
beginning of learning, then we make them small gradually
according to the leaning steps.γy1

and γy2
represent a

constraint for periodic trajectories, so we choose them larger
than other coefficientsγū, γuc

andγc.
Since it is only guaranteed that we can achieve a local

minimum of a cost function because our framework is based
on the steepest decent method as mentioned in Section II-B,
a generated trajectory is not always physically valid, thatis,
it is not always a walking gait. Therefore we have to choose
its initial condition in the neighborhood of a walking gait.
Though virtual potential energy does not always converge to
0, it plays a role of stabilization against disturbance during
walking.



IV. SIMULATION

A. Application to the compass gait biped

We apply the proposed algorithm in the previous section
to the compass gait biped depicted in Fig. 2.

We proceed 250 steps of the learning procedure, which
implies that the robot continues to walk 500 steps to-
tally. The simulation is executed with the initial condition
(θ0

1, θ
0
2, θ̇

0
1, θ̇

0
2) = (−0.4, 0.3, 1.5,−1.0). The design parame-

ters of the cost function (12) are(γy1
, γy2

, γū, γuc
, γc,∆t) =

(30, 30, 0.30, 1.0, 1.0, 3.0×10−3). Parameters of the learning
procedures areKc(0) = 100, ǫ1(·) = ǫ2(·) = 0.10, K1(·) =
diag(2.0 × 10−2, 1.0 × 10−2) andK2(·) = 5.0 × 10−2.
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Fig. 5. History of cost function (upper left), that of constraint parameter
Kc (upper right) and phase portrait (bottom)

Fig. 5 shows the simulation results. The history of the cost
function (12) along the iteration decreasing monotonically.
It implies that the output trajectory and the strength of the
virtual constraint converges to an optimal ones smoothly. The
figure shows the phase portrait ofθ − θ̇. It exhibits that a
limit cycle which implies a periodic motion is generated as
the robot continues to walk.

B. Application to the compass gait biped with a torso

We observe that a limit cycle is generated in the previous
section, but the walking speed does not designed in the case
of the compass gait biped. In this section, the additional
degree of freedom is installed as in Fig. 6. We consider
the compass gait biped with a torso, which is a more
general walking robot model. The generalized coordinate
is defined asq := (q1, q2, q3)

T = (θ1, θ2, θ3)
T, where θ3

denotes the torso angle and the control input defined as
ū := (ū1, ū2, ū3)

T = (u1 − u3,−u2, u2 + u3)
T. Then, the

dynamics of the robot is described by a Hamiltonian system
(7) with the Hamiltonian (8). Here the inertia matrix and the
potential energy are as follows

M(q) =
0

@

mT l2 + ml2 + ma2 −mbl cos(q1−q2) mT cl cos(q1−q3)
−mbl cos(q1−q2) mb2 0
mT cl cos(q1−q3) 0 mT c2

1

A

V (q) = mg{(a + l) cos q1 − b cos q2} + mT g{l cos q1 + c cos q3}.

x
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3u
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Fig. 6. The compass gait biped with a torso

The detail of the transition equation of the robot is omitted
here. See [5].

The control objective is as follows. We control the legs by
ū1 and ū2 as in the same manner of the compass gait biped.
For the torso control, we use the following controller

ū3 = −K31q3 − K32(v
d
x − lq̇1 cos q1), (24)

whereK31 andK32 are appropriate positive constants and a
design parametervd

x represents a desired horizontal velocity
and lq̇1 cos q1 denotes the velocity of the hip joint of the
robot. In this method, one can design the desired velocity of
the hip joint instead of the center of mass, because one can
obtain the hip velocity only using information of the total
leg lengthl, while the usage of the center of mass requires
the precise knowledge of the robot parameter.

We proceed 240 steps of the learning procedure.
The simulation is executed with the initial condition
(θ0

1, θ
0
2, θ

0
3, θ̇

0
1, θ̇

0
2, θ̇

0
3) = (−0.2, 0.2, 0.0, 1.5,−0.1, 0.0).

The design parameters of the cost function (12) are
(γy1

, γy2
, γū, γuc

, γc,∆t) = (3, 3, 0.30, 3.0 × 10−3, 5.0 ×
10−3, 3.0 × 10−2). Parameters of the learning procedures
are Kc(0) = 90, ǫ1(·) = 1.0 × 10−2, ǫ2(·) = 1.0 × 10−3,
K1(·) = diag(1.0 × 10−2, 1.0 × 10−2), K2(·) = 2.0 × 10−2

andvd
x = 0.50m/s.

Fig. 7. History of cost function

Fig. 7 shows the cost function (12) decreasing monotoni-
cally along the iteration. It implies that the output trajectory
converges to an optimal one smoothly. Fig. 8 implies that
the strength of the virtual constraint is mitigated and Fig.9
shows the sum of the norms of all inputs, i.e. the feedback
input for potential energy, the feedforward inputsū1, ū2 and



Fig. 8. History of virtual potential gainKc

Fig. 9. The norm of all inputs

θ θ

θ

θ

θ θ

θ

θ

Fig. 10. Phase portrait and horizontal velocity (vd
x = 0.5m/s)

Fig. 11. Animation of the robot (from the first 5 steps to the last 3steps)

the feedback input̄u3 is also optimized. Fig. 10 shows that
a limit cycle which implies a periodic motion is generated
consequently and the robot achieves the desired horizontal
velocity vd

x = 0.5m/s. Finally, Fig. 11 shows the animation
of the robot and it implies that the robot improves his walk
as it continues to walk.

We observe that some limit cycles are generated by
changing the desired velocities.

V. CONCLUSION

In this paper, we have proposed an optimal gait generation
framework using virtual constraint and learning optimal
control. The proposed method does not require the precise
knowledge of the plant system. Due to the constraint, it
does not need to repeat laboratory experiments under the
same initial condition which is necessary for existing ILC
frameworks. The proposed technique also differs from the
past proposed ones using virtual constraint in that it automat-
ically mitigates the strength of the constraint according to the
progress of learning control. Finally, numerical simulations
demonstrate the effectiveness of the proposed framework.

We try to apply the proposed method to more complex
robots which have many degrees of freedom as a future
work.
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