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Abstract— This paper proposes an optimal gait generation ing optimal control. The proposed method is summarized
framework using virtual constraint and learning optimal con-  as follows. Firstly, we add a constraint by adding a virtual
trol. In this method, firstly, we add a constraint by a virtual potential energy to prevent the robot from falling. Secgndl

potential energy to prevent the robot from falling. Secondly, te the | . d . di
we execute iterative learning control (ILC) to generate an opti- we execute the learning procedure as IS proposed in our

mal feedforward input. Thirdly, we execute iterative feedback Previous works [7], [8]. The proposed technique restricts
tuning (IFT) to mitigate the strength of the virtual constraint ~ the motion of the robot to a symmetric trajectory by the
automatically according to the progress of learning control. virtual constraint. Due to this, it does not need to repeat
Consequently, it is expected to generate an optimal gait with- oy seriments under the same initial condition. Thirdly, by

out constraint eventually. Although existing ILC frameworks dina th tential qain for th traint wni
require a lot of experimental data under the same initial condi- regarding the potential gain for the constraint as a tuning

tion, the proposed method does not need to repeat experiments Parameter, we execute iterative feedback tuning (IFT) to
under the same initial condition because the virtual constraint mitigate the strength of the virtual constraint automalijca

restricts the motion of the robot to a symmetric trajectory.  according to the progress of learning control. Consequentl
Furthermore, it does not require the precise knowledge of the j; j5 aypected to generate an optimal gait without constrain
plant system. Finally, some numerical simulations demonstrate tually. Let te that th d thod diff
the effectiveness of the proposed method. eventuaily. .e. us nog a _e p“?pose me _0 . iners
from the existing techniques using virtual constraint iatth
. INTRODUCTION our method automatically optimizes the strength of the

In the recent active research and development regardiﬁBnStramF' Finally, some numerical simulations demaustr
humanoid robots, a lot of techniques to realize dynamill’® €ffectiveness of the proposed method.
bipedal walking have been proposed. Many conventional 0
frameworks for bipedal walking control are classified as
motion planning based on the zero moment point (ZMP)
based control. Dynamic Wa|k|ng control based mssive This section refers to some of the basic results about
dynamic walking[1] attracts attention, e.g., [2], [3], [4], learning optimal control of Hamiltonian systems, partaiy
as is antithetical to the ZMP based control with respect tgboutiterative learning control (ILC) and iterative feed-
the energy consumption. As an alternative, walking contrd¥ack tuning (IFT) based on variational symmetry originally
methods using virtual constraint based on the output zgroi®Proposed in [9] and [10].
control are proposed [5], [6].

In [7], [8], we have studied optimal gait generation in
terms of the energy efficiency via iterative learning cohtro Consider a Hamiltonian system with dissipation and a
(ILC) proposed in [9] which utilizes a property of Hamilto- controlled HamiltonianH (x, u, t) described by
nian systems. Thanks to the advantage of the method, our

. LEARNING OPTIMAL CONTROL OFHAMILTONIAN
SYSTEMS

A. Variational symmetry of Hamiltonian systems

)T

) . . ) . i=(J—R) OH (z,u,t (tO) _ .0
technique does not require precise information about the T = ox » X =7
plant system. Instead, existing ILC frameworks requireta lo D - . 1)
of laboratory experiments under the same initial condition y = _W

is sometimes difficult to repeat experiments under the same N - ) )
initial condition, because it is difficult to realize the ttes  Herez(t) € R™, u(t), y(t) € R™ describe the state, the input

: e
initial velocity of the mechanical systems including walii @nd the output, respectively. The structure maffix R"™*"
robots. and the dissipation matri® € R"*"™ are skew-symmetric

and symmetric positive semi-definite, respectively. Insthi
paper, we consider behaviors of the system (1) at a finite
time interval [t°,¢!] and often describe the system =s:
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a nonsingular matrixl” € R™*" satisfying V.I'(u,y) and V,I'(u,y) as above. The steepest descent

1 1 method implies that we should update the inpusuch that

J=-TJT ", R=TRT 2
— / L

0?H (z,u,t) (T O) 0?H (x,u,t) (Tl O) u(itn) = ue) — Kily 0=0,1,2,---, (5)

U=U(3),Y=Y(i)
2 I 2 I . . . .
O, u) 0 O(,u) 0 where K is an appropriate positive gain arddenotes the
Suppose moreover thdt- R is nonsingular. Then the adjoint i-th iteration in laboratory experiment. In calculatifi, one
of the variational systenidX)* has the time-reversal state- can calculatév,I'(u, y) andV,I'(u, y) in (4) by information

space realization of the variational systetit. of v andy. However, the precise knowledge of the system
Remark 1:Suppose the Hessian of the Hamiltonian withis generally required to calculatelX(u))*. This method
respect to(z, u) is satisfying utilizes variational symmetry (3) to solve this problem as
mentioned in Remark 1.
0?H (x,u,t) _ 0?H(x,u,t)

72( —t%) = 72(731 —t), Vi e [to’tl], Secondly, IFT proposed in [10] is mentioned in more
9(x,u) O(x,u) detail. We consider feedback controllers= C(p, z) under
Then, under the appropriate initial condition Bf Equation Which Hamiltonian structure is preserved, i.e., the closed
(3) holds loop system is again Hamiltonian system. Hgrec RF*
1 represents gain parameter. For example, a class of such
(dX(w)*(v) = =Ro(X(u+eR(v)) —X(u)), (3) feedback controllers is the generalized canonical transfo
€ mation [11]. In this method, gain parameters of a given
wheree represents sufficiently small positive constant @&d feedback controller are considered to be virtual inputs for
is a time-reversal operator definedByu)(t—t°) = u(t'~t)  a Hamiltonian system to utilize variational symmetry. The
for vt € [t°,¢']. algorithm is similar to that of ILC. We define the zeroth-
Equation (3) implies that one can calculate the inputorder hold operator which maps the parameter R to the
output mapping of the adjoint by only using the input-outpuf.® space in order to define the virtual input.
data of the original system. The literature [9] says that one Definition 1: Consider¢ € R* andw € L%. We define an
can utilize the property (3) in considering general mecteini operatorh satisfying the following equation as the zeroth-

systems. order hold operator.
B. lterative learning control and iterative feedback tugin h:RF — LE: ¢ w

We review some results of ILC in [9] and IFT in [10]. They o Je @ <e<itth) 5
have common feature that they take advantage of variational w(t) = 0 (t<t0t>th) )

symmetry of Hamiltonian systems. The objective of ILGyhen we define the virtual input as, := h(p). Then the

is to find an optimal feedforward input which minimizessrresponding output which induces variational symmetry
a given cost function, while that of IFT is to find optimal 3y js given by

parameters of a given feedback controller. Figure 1 ilatss

the difference of the concept between them. . OH(z, tp)"
yp L ap )
@ lterative Learning Control : ‘P]“m:t”mdkkolu:ufw whereH denotes the Hamiltonian of the closed loop system.
- Utilizing u, andy,, one can update parameters in the similar
Input u(t)/' Plant System Output y(#) A
manner (5) as in the case of ILC.
’ }_W—m Remark 2: A typical mechanical system can be described
by a Hamiltonian system
| . oH (g.p.u) T
Fig. 1. lllustrations of ILC and IFT g\ _ (0 I T~ aq
¥ - P -I -D aH(g,p,mT @)
Firstly, let us mention ILC in more detail. Consider the  oH@@pw)T i
systemY in (1) and a cost function” : LJ'[t°¢!] x Y="""0u =4
L[t° '] — R. This technique is based on the steepestith the Hamiltonian
descent method. The gradient of the cost functionvith 1 ¢ . .
respect to the control input is calculated as H(q,p,u) = 50" M(@)"p+V(g) —u'g,
dl'(u, y) (du, dy) = (VT (u, y), du) +(V, T (u, y), dy) whereg,p € R™ and a positive matrix\/(¢) denotes the

= (VoD (u, y) + (A2 (w))*V, T (u, ), du) =: (I, du) (4) inertia matrix, a positive semidefinite matrix denotes the
friction coefficients and a scalar functidri(¢) denotes the
Here dI'(u,y) represents the Echet derivative ofl’ and potential energy of the system. It is proven that we can
note thatdy = d¥(u)(dw). It follows from well-known always apply ILC and IFT methods mentioned in this section
Riesz’s representation theorem that there exists operatdo the system described in (7). See [9], for the detall.



TABLE |

and the outputy = ¢, where a positive definite matrix
PARAMETERS AND VARIABLES

M(q) € R*<2 denotes the inertia matrix and a scalar

Notation Meaning Unit function V(¢q) € R denotes the potential energy of the
mH hip mass kg system. The details are as follows

m leg mass kg

a length fromm to ground m 2 2 2 _

. length from hin tom , M(g) = (mHlbl+ ma? + ml mbl coség1 CD))
l=a+b total leg length m —mbl cos(q1 — q2) m

g gravity acceleration m/s?

01 stance leg angle w.r.t vertical rad V(q) = {(mgl+ma+ml)cosq —mbcosga}tg. (9)

02 swing leg angle w.r.t vertical rad . . . .
uy ankle torque Nm Note that using (9), the generalized momentum is described
u2 hip torque Nm asp = M(q)q. Following the law of conservation of the

angular momentum, a transition equation is obtained. The
detail of the equation conforms [12], so it is omitted here.

I11. OPTIMAL GAIT GENERATION VIA LEARNING
OPTIMAL CONTROL USING VIRTUAL CONSTRAINT

This section proposes our framework. Firstly, we refer to a. In the literatures [5], [6], walking control methods using

constraint by adding virtual potential energies, whichypla virtual constraint ba;ed on the output zeroing control ace p _
an important role in our method. Then, we define a coﬁosed' In [6], especially, they can achieve stable symmetri

function and derive the learning iteration laws. walking gaits using another property of Hamiltonian system
than that used in this paper. They set the output function

A. Description of the plant y = h(x) = ¢1 + ¢ to zero by the output zeroing control

We consider a fully actuated planar biped robot called thand keep the leg angles bounded by a leg exchange scheme.
compass gait biped12] depicted in Fig. 2 and afterward we AS & consequence, they guarantee that the robot does not fall
also consider the one with a torso depicted in Fig. 6 as a mof8d obtain symmetric walking gaits satisfying+ g2 = 0.

general walking robot model. Table | shows physical param- On the other hand, we use a similar concept of the virtual
constraint to prevent the robot from falling, but do not use t

oY output zeroing control. There are two reasons: one is tlgat th
B lg output zeroing control requires the precise knowledge ef th

. \ w plant system and the other is that such constraints consume a
N 6 lot of control energy. We add a virtual potential energy such
as Equation (10) to produce a similar effect to [6]

B. Constraint by adding virtual potential energies

K.
P, := 7((11 + q2)°. (10)

AN Here, the gain parameteK . represents the constraint
0[% strength. We makey. sufficiently large at the beginning
of the learning steps so that the trajectory of the robot is
restricted to symmetric one, i.¢; + go = 0 holds. Due to

eters and variables. Assumptions on this robot conformp [1&6 ] 't. IS expecte_d that the robot does not fe}ll. The advaetag
f this method instead of the output zeroing are as follows.

h i here. Wk f i i ) .
and they are omitted here. We use number of notations WI&}rstly, it does not require the model parameters of thetplan

Fig. 2. The compass gait biped

TABLE I system, since the potential energy (10) can be generated by a
SOME NOTATIONS simple proportional feedback K.(q1 + ¢2). Secondly, after
adding the potential energy, the plant system preserve the
Notation Meaning ; ; ; ;
= G T = )T Jeneralized coordinate HarF|I_tc|)n|an st_ruc(tju_re r:?ndchellcorllstra:;t pararg_dl(@r is
p:=(p1,p2)T generalized momentum explicitly contained in the Hamiltonian. By regar mgc as
z:= (¢%,pT)T state a tuning parameter, we try to adjust the constraint strength
0 := (01,02)" angles of legs by IFT mentioned in Section II-B. The idea of the proposed
0 :(: )(91, 62)T angular velocities of legs framework is the following.
—(+

just before (after) transfer

Stepl : Add a virtual energy to restrict the motion of
the robot to a symmetric trajectory. Then, make

respect to the state. Table Il summaries them. Here is a new constraint parametdk. sufficiently large to expect
input defined agi := (u1,u2)" = (u1 + ug, —uz)™. Then, that the robot does not fall.

the dynamics of this robot is described by a Hamiltonian Step2 : Execute ILC procedure to generate an optimal
system (7) with the Hamiltonian walking gait as our previous work in [7].

B 1 p . T Step3 : Mitigate the constraint parameter by IFT automat-
H(g,p,u) = 5p"M(q)"p+V(g) —uq (8) ically according to the progress of learning control.



Stepd : As a result, it is expected that an optimal gait is At
generated without a constraint eventually.
The feature of the proposed method is that the robot
improves his walk keeping on walking, because the robot
does not fall due to Stepl. Our method also differs from

the past proposed ones using virtual constraint in that it oL —t
. . . . 0

automatically optimizes the strength of the constraint. t t+At t

C. Derivation of the iteration laws Fig. 3. lllustration ofA;

Let us consider a HamiltoniaH of the closed loop system

adding the virtual potential ener 10) by the proportiona .
feedbng—Kc(m +p¢I2) as bellowgy( ) by the prop evaluatey(t) — CR(y)(t) at only aroundt = t°. Fig. 3

illustrates A;(¢). The physical meanings of each term of

~ _ 1 _ : . .
H(q,p,a, K.) = ~p"M(q)"'p + V(q) the cqst funct_lqn (12) are as follows. The first _tgrm is a
2 restraint condition to satisfy a necessary condition for 1
—utq+ &((h + g)>. period-periodic trajectories_ such thag(t!) = QQ(tO) and
2 O2(t*) = 01(t°). Note that just after the collision between

The output which induces variational symmetry (3) witha leg and the ground, leg angles do not change and leg
respect tau for the closed loop Hamiltonian system is givenexchange between the support leg and the swing leg arises
by - instantaneously, i.e?] = 0,(t!) and 6 = 6,(t'), so the
y = _aH(q7p7ﬁ,Kc) —gq following relation holds for 1 period-periodic trajectesi
' ou ‘ 01(t') = 62(t°) and h,(t*) = 6,(t°) (see also Fig. 4). The
In what follows, the operator — vy is described as.
and each elements of the outpptis describedy; and ys,, 0,

respectively, that isy; = ¢; andy, = ¢o. We define the QE 2 ]

’

virtual input u. to mitigate the constraint gain parameter £ Support,” {7 Swing {
K. asu. := h(K.). Then the corresponding output which
induces variational symmetry is given by \

COH(¢,p 0, Ke) (g1 + q2)? a

c = = — . 11 ’ \
Y oK, 2 (11) K}
In what follows, the operatot,. — y. is described a&.. 2 .
We propose a cost function as follows 2 ¥
t° Swing t' Support  t*
Ty, @, ue) :=
1 ¢ T
2 /to (y(T) B CR(y)(T)) Ay(T) (y(T) _CR(y)(T))dT Fig. 4. lllustration of the restraint condition of the cosnttion
Y -2 Y 2 Ve 2
+7||UHL2 +7”u6(y1 +v2)llz, +§H“C”L2’ (12)  second and the third terms are to minimize feedforward input
where the matrixC' which exchanges the support and the and the feedback inpuk.(y: + y2) which is applied for
swing leg angles is given by the virtual potential energy, respectively. The last tesntoi
optimize the strength of the virtual constraint.
C = <O 1) . In our previous result [8], we also considered a necessary
10 condition with respect to angular velocitigsin the cost

Positive constantsy, .. and~,. represent weighting coef- function. The condition is that initial angular velocities
ficients for each terms, respectively. A symmetric positivére equivalent to velocities just after touch down. We do
definite matrixA,(t) represents the weighting function de-not consider the condition in this paper, because it makes

fined by iteration law more complex. It is our future work. For anathe
) choice of cost function, we can deal with functionals with
Ay(t) = diag (7, Ae(t), 79, Ae(F)) 5 respect to the joint anglé, its velocity & and the control
i <1 — cos (%%w)) (" <t <t94+ A) input w.
A(t) = (13) We derive the updating law for the feedforward inputs for
0 O+ At <t <th), Steps 2 in the summary mentioned in the Section III-B. Let

. o us calculate the Echet derivative of the cost function (12)
where positive constantg, , v,, represents weighting coef- 55 follows

ficients fory; andys, respectivelyAt denotes a sufficiently - B
small positive constant. Equation (13) implies that(t) 4T @ uc)(dy,da) = (Ay(y — CR(y)),dy — CR(dy))
plays a role of a weight function with respect to time to +(Ya, d@) + (yu,uZ(1, 1)y, (1,1)dy).



We have the gradient of the cost function (12) with respedhe constraint parameter as
to u corresponding to Eq. (4) as follows

, _ N _ dT(y, @, ue)(dye, duc) (20)
I = Val(4,y)+(dX%(a)"V, [ (a,y), (14)  (etie — 2 tteer dtie) + (— .2, A5 (ue) (due))
Vﬁr = ’Yﬁﬂ» * 5 9
11 = (%“0_2%“090— (d¥c(uc)) (%cuc))vch%
VT = (- RO, - ROW) + 1 (] 1)

using ly.| = —y. andsign(y.) = —1 by Eq. (11) andu. =
By using Egs. (3) and (14), the updating law for the feedy(K.). We refer to the fact showed in [10] that for anye

forward input is given by Ly [t°, t1], the following equation holds
U(2i+1) = W(2q) + 51(21)R(Vyr(2i)) (15) il
~ ~ h*v = / v(7)dr. (21)
U(2it2) = U2i) — Ki(2i) (vﬁF(Qi) 0

+ R(Y2is1) — y(m))> (16) ByEas (3),.(20_) and (21), the updating law for the constraint
€1(2i) parameter is given by
rovided that the initial inputi gy = 0 and the first initial
P Puti©) KC(2i+1) = Kc(m‘) - 62(2i)7ucKC%2i) (22)

condition x?o) is appropriately chosen. Herg ., denotes
a sufficiently small positive constant and an appropriat%( _x 1% % o K 4
positive definite matrix/y (., represents a gain. The pair = c(2i+2) = Be(2i) 78202 [ Vefhe(2i) ™ Tue BRe(2i)Ye(20) TT
of iteration laws (15) and (16) implies that this learning Koot

procedure needs two experiments to execute a single update —ﬂ/ Ye(2i+1) — Ye(2i)dT- (23)
step in the steepest decent method. In the 1Rth iteration, €2(2i) Jt°

e can get e Pt signal (s + R(0) 1 €6, @) 11 orvaton s simr o ht of th feraion laws (19

. . e ; and (16), so it is omitted here.
(dX)* by using variational symmetry (3). The input for the ) i
(2i+2)-th iteration is generated by Eq. (5) with these signals. H€re let us summarize the proposed learning procedure.
Here we derive the updating law for the tuning parameteStep 0:  Set the initial control input agq) = 0 and make

tl

Note that the third term of the cost function (12) is calcedat the constraint parametei. sufficiently large.
as L= |luc(yr + v2)ll7, = ulluell?,lvellz, . we have Let the robot start walking under an appropriate
Fréchet derivative of the cost function as follows initial condition z°.
Step 2+1:While 2+1 period, one utilizes the control input
dI'(y, @, uc)(dye, duc) = derived by (15) under the constraint gain derived
(Yete, due) + (2vu, |Ye|te, duc) + <’yucugsign(y6), dye) by (22).
Step 2+2:While 2+2 period, one utilizes the control input
(v, Ar(y1 — R + v Ai(y2 — R . . . .
O el (2)) F 7, Al (1)) derived by (16) under the constraint gain derived
ydy1 +dys — R(dy1) — R(dye))  (17) by (23
y (23).
Using dy. = —(y1 + y2)(dyy + dyo) from Eq. (11), let us In our framework, there are some open parameters, that

calculate the gradient with respect gp from the rest part i, €1, €2, K1, Ka, Y415 Y0 Yas Yu. @nd . First of all,
® in Eq. (17). For simplicity, we considey,, = ~,, in Eq. all of them have to be positive. We should choeseand
(13) in what follows. Then, we have €2 small enough so that approximation in Eq.(3) holds. The

parameterds; and K, are the step parameters in the steepest
® = ((id = R)vy, Ae(id — R)(y1 + y2),dyr +dy2). (18) decent method. Generally we siY and K, large in the
beginning of learning, then we make them small gradually
Since At in Eq. (13) is sufficiently small, we approximate according to the leaning steps,, and v,, represent a
the left term in the inner product in Eq. (18) by constraint for periodic trajectories, so we choose themelar

id— R A(id — R ’ than other coefficientsy, .. and~..
(id = R)y, Arlid = R) (51 +32)(¢) Since it is only guaranteed that we can achieve a local

2(51(1°) +92(1°)  t=1" minimum of a cost function because our framework is based
~<0 t <t <t'. (19) on the steepest decent method as mentioned in Section II-B,
=201 () 4 ya(t1)) t =11 a generated trajectory is not always physically valid, that

it is not always a walking gait. Therefore we have to choose
Note that#, + 62 = 0 holds when the swing leg of the its initial condition in the neighborhood of a walking gait.
compass gait biped touches down the ground,;€t°) +  Though virtual potential energy does not always converge to
y2(t%) = y1(t') + y2(t') = 0 holds. As a consequence, we0, it plays a role of stabilization against disturbance rnigri
have the gradient of the cost function (12) with respect tavalking.



IV. SIMULATION
A. Application to the compass gait biped

We apply the proposed algorithm in the previous section
to the compass gait biped depicted in Fig. 2.

We proceed 250 steps of the learning procedure, which
implies that the robot continues to walk 500 steps to-
tally. The simulation is executed with the initial conditio
(69,69,69,69) = (—0.4,0.3,1.5,—1.0). The design parame-
ters of the cost function (12) afe, , vy, Ya, Vu., Ve, At) =
(30, 30,0.30,1.0,1.0,3.0x 10~3). Parameters of the learning
procedures aré{c(o) = 100, €10y = €20y = 0.10, Kl(‘) _ Fig. 6. The compass gait biped with a torso
diag(2.0 x 1072,1.0 x 1072) and K.y = 5.0 x 1072,

The detail of the transition equation of the robot is omitted
here. See [5].

(=]
o
o

s £ The control objective is as follows. We control the legs by
5 & 11 andugy as in the same manner of the compass gait biped.
210 £ For the torso control, we use the following controller
8 10 % 0 i3 = —Ks1q3 — K32 (v — lg1 cos qu), (24)
0 50 100 o 0 50 100
step step where K3; and K3, are appropriate positive constants and a

Ph trait of O, DO, Phase portrait of 6, DO . . . ;
eor Porrall 0 1 ! 2 2 design parameter? represents a desired horizontal velocity

and [¢; cosq; denotes the velocity of the hip joint of the

robot. In this method, one can design the desired velocity of

the hip joint instead of the center of mass, because one can

obtain the hip velocity only using information of the total

leg lengthl, while the usage of the center of mass requires

the precise knowledge of the robot parameter.

Fig. 5. History of cost function (upper left), that of coresiit parameter we .proce.ed .240 steps of .the Iea_rn.|r.19 procgdure.

K. (upper right) and phase portrait (bottom) The simulation is executed with the initial condition

(69,69,69,69,69,69) = (—0.2,0.2,0.0,1.5,—0.1,0.0).

Fig. 5 shows the simulation results. The history of the costhe design parameters of the cost function (12) are

function (12) along the iteration decreasing monotorycall (Yys s Yuss Yas Yue: Yer A) = (3,3,0.30,3.0 x 1072,5.0 x

It implies that the output trajectory and the strength of thd0~*,3.0 x 107%). Parameters of the learning procedures

virtual constraint converges to an optimal ones smoottig T ar¢ Kcg) = 90, e1() = 1.0 x 1073, e3¢,y = 1.0 x 1077,

figure shows the phase portrait 8f— 0. It exhibits that a £1() = diag(1.0 x 1072,1.0 x 107?), Kp() = 2.0 x 1072

limit cycle which implies a periodic motion is generated ag@ndv§ = 0.50m/s.

the robot continues to walk.

B. Application to the compass gait biped with a torso

10°
We observe that a limit cycle is generated in the previous
section, but the walking speed does not designed in the case
of the compass gait biped. In this section, the additional
degree of freedom is installed as in Fig. 6. We consider
the compass gait biped with a torso, which is a more

2\
general walking robot model. The generalized coordinate

is defined asg := (q1,q2,q3)T = (01,02,05)T, wheres :

cost function
=)

denotes the torso angle and the control input defined as 10 50 1004,,150 200
— — — — T T & 3!

U = (U1, Up,u3)" = (u1 — ug, —ug,us +uz)" . Then, the

dynamics of the robot is described by a Hamiltonian system Fig. 7. History of cost function

(7) with the Hamiltonian (8). Here the inertia matrix and the

potential energy are as follows Fig. 7 shows the cost function (12) decreasing monotoni-

M(q) = cally along the iteration. It implies that the output tragey
mrl® +mi? 4+ ma®  —mblcos(qi—qz2) mrclcos(qi—qs) converges to an opt_imal one smpothly. Flg 8 implies_that
—mbl cos(q1 —gq2) mb? 0 the strength of the virtual constraint is mitigated and Big.

mecl cos(q1—qs) 0 mrc® shows the sum of the norms of all inputs, i.e. the feedback
V(q) = mg{(a+1)cosqi —bcosga} +mrg{lcosq: + ccosgs}. input for potential energy, the feedforward inputs u, and
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V. CONCLUSION

In this paper, we have proposed an optimal gait generation
framework using virtual constraint and learning optimal
control. The proposed method does not require the precise
knowledge of the plant system. Due to the constraint, it
does not need to repeat laboratory experiments under the
same initial condition which is necessary for existing ILC
frameworks. The proposed technique also differs from the
past proposed ones using virtual constraint in that it aatem
ically mitigates the strength of the constraint accordm¢he
progress of learning control. Finally, numerical simwat
demonstrate the effectiveness of the proposed framework.

We try to apply the proposed method to more complex
robots which have many degrees of freedom as a future
work.
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the feedback inputiz is also optimized. Fig. 10 shows that

a limit cycle which implies a periodic motion is generated
consequently and the robot achieves the desired horizontal
velocity v¢ = 0.5m/s. Finally, Fig. 11 shows the animation
of the robot and it implies that the robot improves his walk
as it continues to walk.

We observe that some limit cycles are generated by
changing the desired velocities.
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