
On repetitive control of Hamiltonian systems
based on variational symmetry

Kenji Fujimoto and Satoshi Satoh

Abstract— This paper is concerned with repetitive control
of Hamiltonian systems which is based on iterative learning
control utilizing the variational symmetry of those systems.
Variational symmetry allows us to obtain an algorithm to
solve a certain class of optimal control problems in the
repetitive control framework. A convergence analysis of this
algorithm is also discussed. Furthermore, some simulations
demonstrate the effectiveness of the proposed method.
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I. INTRODUCTION

Iterative learning control method proposed in [1] is
an algorithm to generate a feedforward input achieving
a trajectory tracking control (on a finite time interval)
without using the precise information of the plant system.
Since this algorithm does not require the precise model of
the plant, it is robust against modeling errors and many
researchers worked on this topic, e.g. [2], [9]. So far,
however, this algorithm was only applicable to trajectory
tracking control problems. Recently, the authors proposed a
novel iterative learning control method based on variational
symmetry of Hamiltonian systems [7], [8], [4].

In this result, it is proved that the variational systems of
Hamiltonian systems are symmetric and this property can
be utilized for executing the iterative algorithm for optimal
control problems without using the precise information of
the plant.

On the other hand, in the linear control systems theory,
repetitive control is also a useful tool which has a close
relationship to iterative learning control, e.g. [11], [10].
Repetitive control is also a kind of a learning method for
a trajectory tracking control problem with time periodic
reference trajectories without using precise information of
the plant. Only the difference between repetitive control
and iterative learning control is the type of the reference
trajectories: time periodic one (with the infinite length) and
one on a finite time interval. However, the repetitive control
for optimal control problem, as in the iterative leaning
control case, was not investigated so far.

The present paper focuses on repetitive control of Hamil-
tonian systems and proposed a new repetitive control
framework based on variational symmetry. Although this
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approach has a defect that the reference (or desired)
trajectories have to be time-symmetric with respect to its
period, it also has a big advantage that it is applicable to a
class of optimal control problems as well as conventional
trajectory tacking control ones. We also provide a conver-
gence analysis which guarantees the convergence of the
output trajectory on the reference (or desired) one under
certain conditions. Furthermore, numerical simulations of
a robot manipulator demonstrate the effectiveness of the
proposed method.

II. ITERATIVE LEARNING OPTIMAL CONTROL OF
HAMILTONIAN SYSTEMS BASED ON VARIATIONAL

SYMMETRY

This section briefly refers to some preliminary back-
grounds.

A. Variational symmetry

The plant system considered here is a Hamiltonian
system with dissipation Σ with a controlled Hamiltonian
H(x, u, t) as (x1, y) = Σ(x0, u) :



























ẋ = (J − R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

y = −
∂H(x, u, t)

∂u

T

x1 = x(t1)

. (1)

Here the structure matrix J ∈ R
n×n and the dissipation

matrix R ∈ R
n×n are skew-symmetric and symmetric

positive semi-definite, respectively. The matrix R repre-
sents dissipative elements such as friction of mechanical
systems and resistance of electric circuits. For this system,
the following theorem holds.

Theorem 1: [8] Consider the Hamiltonian system with
dissipation and the controlled Hamiltonian Σ in (1). Sup-
pose that J and R are constant and that there exists a
nonsingular matrix T ∈ R

n×n satisfying

J = −TJ T−1 R = TR T−1

∂2H(x, u, t)

∂(x, u)2
=

(

T 0
0 I

)

∂2H(x, u, t)

∂(x, u)2

(

T 0
0 I

)

−1

.

(2)
Then the Fréchet derivative of Σ is described
by another linear Hamiltonian system (x1

v , yv) =



dΣ((x0, u), (x0
v , uv)) :


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
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ẋ = (J − R)
∂H(x, u, t)

∂x

T

, x(t0) = x0

ẋv = (J − R)
∂Hv(x, u, xv , uv, t)

∂xv

T

, xv(t0) = x0
v

yv = −
∂Hv(x, u, xv , uv, t)

∂uv

T

x1
v = xv(t1)

with a controlled Hamiltonian Hv(x, u, xv , uv, t)

Hv(x, u, xv , uv, t) =
1

2

(

xv

uv

)T
∂2H(x, u, t)

∂(x, u)2

(

xv

uv

)

.

Furthermore, the adjoint of the variational system with
zero initial state ua 7→ ya = (dΣx0

(u))∗(ua) is given by

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










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


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

ẋ = (J − R)
∂H(x, u, t)

∂x

T

˙̄xv = −(J − R)
∂Hv(x, u, x̄v, ua, t)

∂x̄v

T

ya = −
∂Hv(x, u, x̄v , ua, t)

∂ua

T

(3)

with the initial state x(t0) = x0 and the terminal
state x̄v(t

1) = 0. Suppose moreover that J − R is
nonsingular. Then the adjoint (x1

a, ua) 7→ (x0
a, ya) =

(dΣ(x0, u))∗(x1
a, ua) is given by the same state-space

realization (3) with the initial sate x(t0) = x0, the terminal
state x̄v(t1) = −(J − R)T x1

a and x0
a = −T−1(J −

R)−1x̄v(t0).
This theorem reveals that the variational system and

its adjoint of a Hamiltonian system in the form (1) have
almost the same state-space realizations. This means that
the input-output mapping of the adjoint can be produced
by the input-output data of the original Hamiltonian system
as

R◦(dΣ(u))∗ ◦R(v) = dΣ(ū)(v) ≈ Σ(ū+v)−Σ(ū) (4)

provided appropriate boundary conditions are selected,
where R is the time reversal operator defined by

R(u)(t − t0) = u(t1 − t), ∀t ∈ [t0, t1]. (5)

This property is utilized for solving the optimal control
problems in which the adjoint operator plays an important
role.

Remark 1: It is noted that if the system is a gradient
system [3] which is a nonlinear generalization of a linear
symmetric system, that is, J = 0, then the assumption (2)
in Theorem 1 is automatically satisfied with T = I . On
the other hand, if the system is conservative, that is, R = 0
then it is self-adjoint in the usual sense [8].

B. Optimal control via iterative learning

Let us consider the system Σ : U → Y in (1) and a cost
function Γ : X2 × U × Y → R. The objective is to find
the optimal input (x0

?, u?) minimizing the cost function
Γ(x0, u, x1, y). In general, however, it is difficult to obtain

a global minimum since the cost function Γ is not convex.
Hence we try to obtain a local minimum here. Here we
can calculate

d
(

Γ((x0, u), Σ(x0, u))
)

(dx0, du)

= dΓ((x0, u),Σ(x0, u))
(

(dx0, du), dΣ(x0, u)(dx0, du)
)

= 〈Γ′((x0, u), Σ(x0, u)),

(

idX×U

dΣ(x0, u)

)

(dx0, du)〉X2
×U×Y

= 〈
(

idX×U ,(dΣ(x0, u))∗
)

Γ′(x0, u, x1, y), (dx0, du)〉X×U .

Therefore, if the adjoint (dΣ(x0, u))∗ is available, we
can reduce the cost function Γ down at least to a local
minimum by an iteration law with a K(i) > 0.

u(i+1) = u(i)− K(i) (0UX , idU )
(

idX×U , (dΣ(x0
(i), u(i)))

∗

)

Γ′(x0
(i), u(i), x

1
(i), y(i))(6)

The results in the previous section enable one to execute
this procedure without using the parameters of the original
operator Σ by the relation (4), provided Σ is a Hamil-
tonian system and the boundary conditions are selected
appropriately. In [8], this framework is effectively utilized
for iterative learning control (of trajectory tracking) for a
‘round trip’ type trajectory. More precise discussion for
optimal control will be made in the following sections.

III. MAIN RESULTS

In this section, we propose a new algorithm which
can solve a class of repetitive control problems based on
variational symmetry of Hamiltonian systems.

A. Repetitive control

A typical repetitive control problem is to achieve trajec-
tory tracking control for a periodic reference trajectory by
learning (experiments) without using precise information
of the plant [11]. A conventional iterative learning control
is also to achieve trajectory tracking control by learning but
the reference trajectory is defined on a finite time interval,
that is, tracking is achieved by several experiments with
finite time interval (with the same initial states) [1].

The approach taken here is to provide a repetitive control
framework using the iterative learning control based on
variational symmetry. Variational symmetry allows us to
obtain an algorithm to solve a certain class of optimal
control problems in the repetitive control framework. Here
we adopt the following strategy: Suppose that the plant
Hamiltonian system is controlled by a feedback designed
by generalized canonical transformations [6] so that the
closed loop system is again described by a Hamiltonian
system (1). See Section IV for a concrete example of
constructing such a control system and refer to [8] for the
detail. Suppose also that the desired reference trajectory
or the desired optimal trajectory is L-periodic and time-
symmetric1, and that it contains a stationary point. Then

1 Since the iterative learning control based on variational symmetry
needs experiments with time-reversal trajectories with respect to the
trajectory to be learned, the reference or desired trajectory has to be
time-symmetric in the repetitive control framework.



apply the iterative learning control for the first period L
from the stationary point and then wait for the state to con-
verge on the stationary point. When the state approaches
sufficiently close to the stationary point, the next iterative
learning control with time period L starts and continue in
the same manner. A more detailed procedure is explained
below. (See Figure 1 as well.)

Step 0:Suppose that the initial state x(0) is a stationary
state. Set t0(1) := 0 and goto Step 1.

Step i: (a) Set tL(i) := t0(i) + L and apply the iterative
learning control procedure stated in Section
II for the time t ∈ [t0(i), t

L
(i)].

(b) Set u(t) ≡ 0 for t ≥ tL(i) and find the smallest
τ ≥ tL(i) satisfying

‖x(τ)‖ ≤ b (7)

with a prescribed constant b > 0, and u(t) ≡
0 is applied for t ∈ [tL(i), τ ]. Define ∆t(i) :=

τ − tL(i) and t0(i+1) := τ and go to Step i+1.
By this algorithm, an adjustment parameter b with an

excess converging time ∆t(i) is introduced, so the initial
state of iterative learning control in each period is suffi-
ciently close to the stationary point x(0). However if ∆t(i)
converges on 0 as i grows, then we can conclude that
we asymptotically obtain a repetitive control system. So
the following section discusses the behavior of the excess
converging time ∆t(i).

B. Convergence analysis

In the procedure proposed in the previous section, we
have introduced an adjustment parameter b in Equation (7)
and, consequently, we need to employ the corresponding
excess converging time ∆t(i) which is 0 in the conven-
tional repetitive control. This section discusses when the
converging time ∆t(i) becomes (converges on) 0.

Under certain smoothness assumptions on the system
(1) and the cost function Γ, we can prove the following
theorems.

Theorem 2: There exists a constant bmax > 0 such that
for any positive b ≤ bmax there exists ∆tb

∞
≥ 0 satisfying

lim
i→∞

∆t(i) = ∆tb
∞

,

and the state x(t) will converge on a (L +∆tb
∞

)-periodic
trajectory.

∆ ∆
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Fig. 1. Typical time response of the proposed repetitive control procedure
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Fig. 2. 2-link robot manipulator

TABLE I
PHYSICAL PARAMETERS

θi the joint angle of the i-th link [rad]
mi the mas of the i-th link [kg]
li the length of the i-th link [m]
lgi the length to the center of gravity [m]
Ii the mass of the i-th link [kgm2]
di the friction coefficient of the i-th link [Nms/rad]

Its proof is based on Gronwall-Bellman Lemma and
Morse Lemma. It is omitted due to limitation of space.
See [5] for the detail.

Here we can prove that the state trajectory always con-
verges on a periodic trajectory. Furthermore, the following
theorem guarantees that the excess converging time ∆tb

∞

also converges on 0 as b becomes smaller.
Theorem 3: Suppose that iterative learning control ap-

plied to the plant achieves a trajectory tracking control2.
Then the following equation holds.

lim
b→0

∆tb
∞

= 0

The proof of this theorem is also omitted here. See
[5] for the detail. This theorem implies that the proposed
method converges on conventional repetitive control as the
adjustment parameter b → 0. This fact allows us to obtain
optimal control periodic solutions by repetitive control
framework.

IV. SIMULATION

This section exhibits the effectiveness of the proposed
method via numerical simulations. Here let us consider a
two-link robot manipulator moving on a horizontal plane
depicted in Figure 2. As in the figure, the joint angles of
the first and the second links are denoted by θ1 and θ2,
respectively. The physical parameters of this apparatus are
summarized in Table I.

Then the dynamics of this apparatus is described by a

2For example, the authors’ former paper [8] proves that iterative
learning control for a trajectory tracking problem of simple mechanical
systems always achieves the global minimum.
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Hamiltonian control system (1) with

x = (q, p)

q = (θ1, θ2)

p = M(q)q̇

H(x) =
1

2
pTM(q)−1p − qTu

J =

(

0 I
−I 0

)

R =

(

0 0
0 diag(d1, d2)

)

and

M(q) =









1 0 0 0
0 1 0 0
0 0 b1 + b2 + 2b3 cos θ2 b2 + b3 cos θ2

0 0 b2 + b3 cos θ2 b2









where

b1 := I1 + m1l
2
g2 + m2l

2
1 =

4

3
m1l

2
g2 + m2l

2
1

b2 := I2 + m2l
2
g2 =

4

3
m2l

2
g2

b3 := l1m2lg2.

The concrete parameters used in the simulations are b1 =
2.292, b2 = 0.600 and b3 = 0.750. See [8] for the detail
of this apparatus.

As explained in Section III, we need to apply a local
feedback designed by a generalized canonical transforma-
tion in order to obtain the closed loop system to be a
Hamiltonian system. Here we employ a PD pre-feedback

u = ū − KPq − KDq̇ +
∂V (q)

∂q

T

with a new input ū and the PD gains KP and KD. A scalar
function V (q) denotes the potential energy of the system.
Then the dynamics of the closed-loop system is again
described by a Hamiltonian system (1) and this control
system is depicted in Figure 3. For this system the output
signal is y = q = (θ1, θ2) describing the joint angles.

A. Trajectory tracking control

Here we consider repetitive control for a trajectory
tracking control problem. The desired trajectory for the
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1
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time [sec]
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itu
de

desired theta2
desired theta1

Fig. 4. Desired trajectory

output yd = (θd
1 , θd

2) is given by

θd
1(t) :=

1

2
sin

π

2
(t − 1) +

1

2

θd
2(t) :=

{

0 (0 ≤ t < 3
8L)

1
2 sin π

2 (t − 1 + 3
8L) + 1

2 (t ≥ 3
8L)

with the period L = 4 [s] which is depicted in Figure
4. Notice that θ1 and θ2 do not have stationary points
simultaneously.

Now apply the proposed method with the following cost
function

Γ(y) =
1

2
‖y − yd‖2

L2
. (8)

Then the corresponding iterative learning law can be
obtained by

ū(2i+1) = ū(2i) + R{(y(2i) − yd)}

ū(2i+2) = ū(2i) − K(i)R(y(2i+1) − y(2i)). (9)

The simulation results of the repetitive control are depicted
in Figures 5–8. Figure 5 denotes the responses of the joint
angles θ1 and θ2 from the 1st to 8th periods. Figure 6 de-
notes those with their reference signals in the 55th period.
Both figures show that the joint angles are approaching
to their desired trajectories. Figure 7 denotes the history
of the cost function Γ in Equation (8) with respect to
the period i (learning step). This figure shows that the
joint angles converge on their reference trajectories, since
the cost function monotonically decreases. Furthermore,
Figure 8 denotes the excess converging time ∆t(i) with
respect to the period i. This figure shows that the period
(L + ∆t(i)) converges on 4 [s] after the 58 period. Thus
the proposed repetitive control method works well with a
trajectory tracking control problem.

B. Optimal control problem

Next we consider repetitive control for an optimal con-
trol problem, that is, a trajectory generation problem. As
explained in Footnote 1, the desired (generated) trajec-
tory has to be time-symmetric with respect to the period
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L3. Therefore we employ a special cost function which
achieves desired intermediate and terminal joint angles
with suppressing the input signal u and preserving the
time-symmetry of the trajectory

Γ(y) =
1

2
kd‖F (t)(y − yd)‖2

L2
+

1

2
kt‖y −R(y)‖2

L2

+
1

2
ku‖u‖

2
L2

(10)

3More precisely, the Hessian of the Hamiltonian function has to be so
[8].
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Fig. 7. Cost function Γ for trajectory tracking control
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where kd, kt and ku are positive constants and the function
F (t) is defined by

F (t) =















1 t ∈ [ti − ε, ti + ε]
(i = 1, 2, . . . n)

0 otherwise

(11)

with a small constant ε > 0. Here the first term of the cost
function Γ in Equation (10) is for achieving the desired
intermediate and terminal outputs (yd is an appropriate
‘virtual’ time-symmetric reference output which is only
valid for t satisfying F (t) 6= 0), the second for suppress-
ing the input, and the last for time-symmetry. Then the
corresponding iterative control law is given as follows.

ū(2i+1) = ū(2i)+R{kdF (t)(y(2i)−yd)

+ 2kt(y(2i)−R(y(2i)))}

ū(2i+2) = ū(2i)(Id − kuK(i))

− K(i)R(y(2i+1) − y(2i)) (12)

where Id is the identity. Let the period be L = 4 [s], the
initial state to be (0, 0), the desired terminal state to be the
same as the initial, and the desired intermediate state to be
yd(L/2) = (θd

1(L/2), θd
2(L/2)) = (1.0, 1.0). The simula-

tion results are depicted in Figures 9–11. For the reason of
space, the responses with respect the first joint are shown.
Figure 9 denotes the time response of the angle of the first
joint θ1 in the 1st, 2nd, 5th, 10th and 100th periods. Figure
10 denotes the history of the cost function Γ in Equation
(10). The cost function monotonically decreases and the
desired trajectory is generated automatically. Furthermore,
Figure 11 denotes the history of the excess converging time
∆t(i) with respect to the period i. It becomes quite small
eventually. Thus repetitive control for an optimal control
problem also works well. These simulations demonstrate
the effectiveness of the proposed algorithm.

V. CONCLUSION

In this paper, we have proposed a new framework for
repetitive control of Hamiltonian systems based on iterative
learning control proposed by the authors previously. Since
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this algorithm is based on variational symmetry of Hamil-
tonian control systems, it is applicable to certain optimal
control problems as well as a conventional trajectory
tracking control one. We have shown that the convergence
analysis which guarantees the convergence of the trajectory
generated by this procedure on the periodic reference or
desired trajectory under certain conditions. Furthermore,
numerical simulations of a robot manipulator have shown
the effectiveness of the proposed method.

We should notice that this result is applicable to gait
generation of a hopping robot [12] where the obtained gait
is optimal in a sense that it minimizes the input energy
[13]. Thus the proposed method is expected to be useful
for several purposes.
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