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Abstract The proposed method can generate an opti-
mal feedforward control input and the corresponding

optimal walking trajectory minimizing the L2 norm

of the control input by iteration of laboratory exper-

iments. Since a general walking motion involves dis-

continuous velocity transitions caused by the collision
with the ground, the proposed method consists of the

combination of a trajectory learning part and an esti-

mation part of the discontinuous state transition map-

ping by using the stored experimental data. We apply
the proposed method to a kneed biped robot with a

torso, where we also provide a technique to generate

an optimal gait not only being energy-efficient but also

avoiding the foot-scuffing problem.

1 Introduction

So far, controlling walking robots has attracted much

research interest. Particularly, walking pattern gener-

ation is a fundamental and important subject in this

research area. As various methods have been proposed,
pattern generation methods are evolving from assign-

ing a heuristic walking pattern to generating an opti-

mal one. Therefore, the optimization of walking gaits
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with respect to the energy consumption becomes in-
creasingly important. In order to generate an energy

efficient walking pattern, the passive dynamic walker

[15] also attracts attention [16,17,12,13]. This robot

has a certain simple structure without actuators and

it walks down on a gentle slope. The uncontrolled dy-
namics of the passive walker intrinsically possesses a

stable limit cycle. Walking control methods based on

the passive dynamic walking have been proposed by

many researchers, e.g. [9,23,11,2,1,24]. Although the
generated gaits are energy efficient, these methods are

only applicable to certain specially structured robots so

far.

On the contrary, we have developed a model-free

optimal gait generation framework by using a univer-
sal property of mechanical systems and learning control

[18–21]. Our method is based on the iterative learning

control (ILC) proposed in [8], which utilizes a prop-

erty of Hamiltonian systems called variational symme-

try. A Hamiltonian system is one of the representations
of a physical system, and thus many kinds of walking

robots can be uniformly described as Hamiltonian sys-

tems. Our technique can generate an optimal periodic

gait which minimizes a cost function by iteration of
laboratory experiments. The cost function mainly con-

sists of two terms: one attempts to minimize the L2

norm of the control input, and the other attempts to

make a trajectory periodic, which is a constraint term

for a periodic gait. By taking advantage of the varia-
tional symmetry of Hamiltonian systems, the proposed

method does not require the precise model of the plant

system. So far, in numerical simulations, we have gen-

erated an optimal running gait of a planer one-legged
hopping robot [18] and optimal walking gaits of a planer

compass-like biped robot [19,21] and one with a torso

[20], respectively.
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In this paper, we consider a kneed biped robot with

a torso, and propose a modification of our previous

learning gait generation methods in properly consid-

ering discontinuous velocity transitions. Since a general

walking motion involves discontinuous velocity transi-
tions caused by the collision with the ground, the pro-

posed method not only executes trajectory learning,

but also estimates a mapping of such transitions with

the stored experimental data. The significance of intro-
ducing knees for the compass-like bipeds are as follows.

First, we can investigate more general and human-like

walking motions. Second, controlling knees enables a

walking robot to achieve a proper foot clearance, and to

avoid the foot scuffing problem [15,10], which is an un-
avoidable issue of compass-like bipeds. The foot scuffing

problem is that the swing leg scuffs the ground when

it passes the stance leg, and this phenomenon causes

the robot to fall down. Regarding this, in this paper,
we also provide a technique for kneed bipeds to avoid

this problem. We deal with a necessary condition for a

periodic trajectory that the state just after the collision

between the swing leg and the ground coincides with the

initial state as a state constraint. Here, the state con-
sists of the joint angle and angular velocity of the robot.

In order to achieve this state constraint, our previous

works [19,21] assigned the desired terminal angle and

velocity with the joint angle and angular velocity sepa-
rately. However, the conflict between the desired angle

and velocity occasionally happens in learning, and then

the both conditions cannot be achieved simultaneously.

To overcome this problem, the proposed method newly

equip a reference trajectory such that the terminal con-
straints of the angle and velocity are simultaneously

satisfied. Although calculation of such reference trajec-

tory generally requires information of the state transi-

tion mapping which maps from the velocity just before
the collision to that just after the transition, the pro-

posed method considers it to be an unknown nonlinear

function, and estimates its Jacobian by the recursive

least-squares with the stored experimental data. Con-

sequently, the proposed method generates an optimal
periodic gait, which is energy-efficient, and also avoids

the foot-scuffing problem without the precise models

of the plant system nor the state transition mapping.

The present paper provides more efficient estimation
scheme of the state transition mapping than an early

version in [22], where the pseudo inverse matrix is em-

ployed. Finally, numerical simulations demonstrate the

effectiveness of the proposed method.

2 Preliminaries

This section briefly refers to preliminary backgrounds.

2.1 Hamiltonian systems and variational symmetry

We consider a Hamiltonian system [4,14] with a con-

trolled Hamiltonian H(x, u) denoted by Σxt0 : U → Y :
u 7→ y as

Σx
t0 :





ẋ = (J −R)
∂H(x, u)

∂x

⊤

, x(t0) = xt0

y = −
∂H(x, u)

∂u

⊤
. (1)

This representation includes typical mechanical systems,

and thus many kinds of walking robots can be uni-
formly described as the form (1). Here, x(t) ∈ X , u ∈ U

and y ∈ Y with Hilbert spaces, and they describe the

state, the input and the output, respectively. Typically,

X = Rn and U, Y = Lm2 [t0, t1] on a finite time inter-
val [t0, t1]. The structure matrix J ∈ Rn×n and the

dissipation matrix R ∈ Rn×n are skew-symmetric and

symmetric positive semi-definite, respectively.

The variational system denoted by δΣx
t0 is derived

from the Fréchet derivative of the systemΣx
t0 . Since we

consider Σx
t0 to be an operator on Lm2 [t0, t1], the ad-

joint system of the variational one denoted by (δΣx
t0 )∗

is also considered. Both systems later appear and play

an important role in the gradient calculation of the

cost function for derivation of the iteration law. The

literature [8] clarified a special property between the
state-space realizations of δΣx

t0 and (δΣx
t0 )∗, which

is called the variational symmetry of Hamiltonian sys-

tems. In short, the variational symmetry implies that

under some conditions, a state-space realization of the
adjoint system with zero terminal state coincides with

a time-reversal version of that of the variational sys-

tem with zero initial state. The variational symmetry

provides the following relation: for all ua ∈ Lm2 [t0, t1],

(δΣx(t0)(u))∗(ua)=R ◦ (δΣψ(t0)(w)) ◦ R(ua), (2)

where ◦ denotes the composition, and w ∈ U and ψ(t) ∈

X, t ∈ [t0, t1] satisfying

R

(
∂2H(x, u)

∂(x, u)2

)
=
∂2H(x, u)

∂(x, u)2

∣∣∣∣x = ψ
u = w

, (3)

whereR represents the time reversal operator on [t0, t1]

defined by

(R(u))(t) = u(t1 − t+ t0), ∀t ∈ [t0, t1]. (4)

From the relation (2), we convert an adjoint system to

the corresponding variational one. Due to the linearity

of the variational system, the difference approximation
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enables us to calculate the output of the variational

system as

R ◦ (δΣψ(t0)(w)) ◦ R(ua) (5)

=
1

ǫ
R ◦ (Σψ(t0)(w + ǫR(ua))−Σψ(t0)(w)) + o(|ǫ|),

where lim|ǫ|→0 o(|ǫ|)/|ǫ| = 0. From Eqs. (2) and (5),

the input-output mapping of the adjoint system can be

obtained by only using the input-output data of the

original system. This is a key technique of our learn-
ing framework based on the variational symmetry. The

precise theorem is available in [8]. See also [20], for ap-

plication to the optimal gait generation problem.

2.2 Iterative learning control using variational

symmetry

We refer to the iterative learning control (ILC) of Hamil-
tonian systems based on variational symmetry in [8].

The objective of ILC is to find an optimal feedforward

input and corresponding optimal trajectory which min-

imize a given cost function by iteration of laboratory

experiments.
Consider the system Σx

t0 : U → Y in (1) and a

cost function Γ̂ (u, y) : U × Y → R. By utilizing the

relation y = Σx
t0 (u), the cost function can be written

by Γ (u) := Γ̂ (u,Σx
t0 (u)) : U → R. Let us calculate the

Fréchet derivative of the cost function in order to obtain

the gradient with respect to the input u as follows:

(δΓ (u))(δu) = 〈∂uΓ̂ (u, y), δu〉U + 〈∂yΓ̂ (u, y), δy〉Y

= 〈∂uΓ̂ (u, y)+(δΣx
t0 (u))∗(∂yΓ̂ (u, y)), δu〉U

=: 〈∇Γ (u), δu〉U . (6)

Well-known Riesz’s representation theorem and the lin-

earity of the Fréchet derivative guarantee that there ex-

ist functions ∂uΓ̂ (u, y) and ∂yΓ̂ (u, y) satisfying Eq. (6).

Since ∇Γ (u) in Eq. (6) represents the gradient of the
cost function with respect to u, the steepest descent

method implies that one can reduce the cost function

down at least to a local minimum by the following it-

eration law with a positive definite matrix K(i):

u(i+1) = u(i) −K(i)∇Γ (u(i)). (7)

Here, the subscript (i) denotes the ith iteration in a

laboratory experiment. However, calculation of the gra-

dient ∇Γ (u) generally requires the precise knowledge of
the plant systemΣx

t0 in calculating the output signal of

the adjoint system corresponding to (δΣx
t0 (u))∗(∂yΓ̂ (u, y)).

The variational symmetry of Hamiltonian systems en-

ables one to avoid the problem. By using Eqs. (2) and
(5), the iteration procedure with Eq. (7) can be exe-

cuted by only input-output data of the plant system

Σx
t0 , which is available from experiments.

3 Description of the plant system

Let us consider a fully actuated planar biped robot with

knees and torso depicted in Fig. 1. The legs and the
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Fig. 1 Model of a planar kneed biped robot with a torso

torso are rigid bars, and they are connected by a fric-

tionless hinge at each joint. A 1-period of walking de-

scribes the period between the take-off of one foot from

the ground and its subsequent landing. Table 1 shows
physical parameters. θ := (θ1, θ2, θ3, θ4, θ5)

⊤ represent

Table 1 Robot parameters

Notation Meaning Unit
mB Mass of the torso kg
mF Mass of the femur kg
mT Mass of the tibia kg
lB Length of the torso m
lF Length of the femur m
lT Length of the tibia m
bB Length from mB to the hip joint m
aB := lB − bB m
aF Length from the hip to mF m
bF := lF − aF m
bT Length from mT to the toe m
aT := lT − bT m
g Gravity acceleration m/s2

the angles with respect to the vertical of the torso, the

femur and the tibia of the stance leg, and those of the
swing leg, respectively. v := (v1, v2, v3, v4, v5)

⊤ denote

the torques relatively applied from the torso to the fe-

mur of the stance leg, from the femur to the tibia of the

stance leg, from the tibia to the ground, from the torso
to the femur of the swing leg, and from the the femur

to the tibia of the swing leg, respectively. We impose

the following assumptions on this robot.

Assumption 1 The foot of the swing leg does not bounce

back nor slip on the ground at the collision. That is, an

inelastic impulsive impact is assumed.
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Assumption 2 Transfer of support between the stance

and the swing legs is instantaneous.

We define the configuration coordinate as

q = (q1, q2, q3, q4, q5)
⊤ := θ,

and the control input u as

u = (u1, u2, u3, u4, u5)
⊤ := Sv,

S =




−1 0 0 −1 0
1 −1 0 0 0
0 1 1 0 0
0 0 0 1 −1
0 0 0 0 1


 (8)

in order to simplify the input-output relation in the

Hamiltonian form. Then, the dynamics of this robot is

described by a Hamiltonian system of the form (1) as

(
q̇

ṗ

)
=

(
05×5 I5
−I5 05×5

)


∂H(q,p,u)

∂q

⊤

∂H(q,p,u)
∂p

⊤


 ,

(
q(t0)

p(t0)

)
=

(
qt0

pt0

)

y = −
∂H(q, p, u)

∂u

⊤

= q (9)

with the state x = (q⊤, p⊤)⊤ ∈ R10 and the Hamilto-

nian

H(q, p, u) =
1

2
p⊤M(q)−1p+ U(q)− u⊤q. (10)

Here, Ii and 0i×j represent the i× i identity and i × j
zero matrices, respectively, and a symmetric positive

definite matrix M(q) ∈ R5×5 denotes the inertia ma-

trix. A scalar function U(q) ∈ R denotes the poten-

tial energy of the system. The generalized momentum

p ∈ R5 is given by p :=M(q)q̇.
At the touchdown, a collision between the swing leg

and the ground causes a discontinuous change in an-

gular velocities. Assumptions 1 and 2 imply that there

exists no double support phase. Since the support and
swing legs change each other instantly, we have

q+ =




1 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0
0 0 1 0 0


q− =: Cq−, (11)

where q− and q+ denote the angles just before and just
after the collision, respectively. Following the law of

conservation of the angular momentum, a state tran-

sition mapping can be expressed by a matrix form as

q̇+ = Π(q−)q̇− (12)

with some matrix Π(q−) which depends only on q−.

For the detail of derivation of Π(q−), See, e.g., [25].

Before the ILC method mentioned in Subsection 2.2

is applied, a local feedback controller is typically em-

ployed to the control system in order to render the sys-

tem asymptotically stable. It is known that in the case

of a typical mechanical system as in (9), a simple PD
feedback preserves the structure of the Hamiltonian sys-

tem [7,8]. We consider the following local PD controller

u = −KP q −KD q̇ + ū , (13)

KP = diag{kp1, kp2, kp3, kp4, kp5},

KD = diag{kd1, kd2, kd3, kd4, kd5},

where ū is a new input for ILC and KP ,KD ∈ R5×5 are

chosen to be positive definite matrices. The resultant

closed-loop Hamiltonian system is denoted by Σ̄(ū) as

depicted in Fig. 2.

+

-

-

KD

KP

q

q
.

uu

Hamiltonian system

Σ u( )

Σ u( )

Fig. 2 Closed-loop Hamiltonian system Σ̄ with the local PD
controller

Remark 1 ([8]) Consider the feedback system of a typi-

cal mechanical system by a PD controller. If the inertia
matrixM(q) of the system does not depend on the con-

figuration coordinate q, then we can let the conditions

for the variational symmetry mentioned in Subsection

2.1 hold. Otherwise, however, if PD gains KP and KD

are chosen large enough, we can still let the conditions

satisfied approximately with arbitrary precision.

4 Main results

This section proposes an optimal gait generation method

based on ILC mentioned in Section 2. In order to gener-

ate a 1-periodic walking trajectory, it is necessary that

the state just after the collision should be equivalent to

the initial state. However, the conventional ILC method
in [8] does not deal with such discontinuous state tran-

sitions. Regarding this, we propose a learning frame-

work, which can generate an optimal periodic trajectory

taking discontinuous state transitions into account. We
also provide a technique to avoid the foot-scuffing prob-

lem. First, we construct a desired terminal state corre-

sponding to the state just before the collision, which will
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be transited to the initial state after the collision. Then,

we derive the iteration law for learning so that the robot

achieves the desired terminal state. However, the iter-

ation law requires information of the Jacobian of the

state transition mapping which maps from the velocity
just before the collision to that just after the transi-

tion. Thus, second, we propose an estimation method

of the Jacobian of the state transition mapping by the

recursive least-squares, and incorporate it into the it-
eration law. Therefore, the proposed framework does

not require the precise model of the robot nor the state

transition mapping. Although the state transition map-

ping is often modeled by imposing the conservation law

of the angular momentum, it does not strictly hold in
practice. The proposed method can deal with the state

transition mapping as a general nonlinear function.

4.1 Learning optimal gait generation method with

state transition estimation

A proper reference trajectory for 1-periodic walking tra-
jectory, denoted by yd, is constructed by considering

the effect of the discontinuous state transition. At the

terminal time t1, which corresponds to the time just

before the collision, yd has to satisfy yd(t
1) = Cyt0 (the

leg exchange matrix C is defined in Eq. (11)). Here,
yt0 = y(t0) = qt0 represents a fixed initial value of the

output generated by a fixed initial state xt0 of the sys-

tem (9). In what follows, we do not necessarily assume

the model (12) under the conservation law of the angu-
lar momentum, but consider the model to be a general

nonlinear function with respect to q− and q̇− instead,

which is denoted as

q̇+ = fΠ(q
−, q̇−). (14)

Note that q− = q(t1) = y(t1) holds between the config-

uration coordinate q and the system output y from the

definition of the system (9). We impose the following
assumption on the function fΠ .

Assumption 3 By using the function fΠ in Eq. (14),

define a mapping f q
−

Π : Rm → Rm : q̇− 7→ q̇+ as

f q
−

Π (·) := fΠ(q
−, ·).

Then, for any q−, the mapping f q
−

Π is diffeomorphic.

In order to investigate the condition for the terminal

velocity so that the state after the transition becomes
equivalent to the initial state, we define the following

inverse mapping of the transition gΠ : Rm×Rm → Rm :

(q+, q̇+) 7→ q̇− as

gΠ(q+, q̇+) := (fCq
+

Π )
−1

(q̇+) = q̇−. (15)

Then, the desired terminal coordinate and velocity for a

1-periodic trajectory, denoted by (y−⊤
d , ẏ−⊤

d )⊤, should

satisfy ẏ+d := fΠ(y−d , ẏ
−
d ) = ẏt0 and y+d := Cy−d = yt0 .

From the mapping gΠ in Eq. (15), the desired terminal

velocity ẏ−d is given by ẏ−d = gΠ(yt0 , ẏt0). Thus, we
obtain the following reference trajectory, which is only

valid around the terminal time t1:

yd(t) := ẏ−d (t− t1) + Cyt0 (16)

= gΠ(yt0 , ẏt0)(t− t1) + Cyt0 .

It is easily confirmed that the reference trajectory yd(t)

satisfies the necessary conditions for a 1-periodic trajec-
tory, that is, yd(t

1) = Cy(t0) and dyd(t
1)/ dt = ẏ−d . As

shown later, since the reference trajectory is only eval-

uated around the terminal time through a time filter

function in the proposed iteration law, we simply de-

fine yd(t) as a linear function with respect to the time.

Second, we propose a constraint term for the cost

function to be minimized in order to avoid the foot-

scuffing problem. It attempts to lift the toe of the swing
leg to a certain height around the middle time of the

period, i.e., (t1 − t0)/2. As Fig. 1 illustrates, the height

of the toe at the time t is given by

(h(y))(t) = lF (cos(y2(t))− cos(y4(t)))

+ lT (cos(y3(t))− cos(y5(t))), (17)

where yi denotes the ith element of y. We introduce a

penalty function F (h) ∈ R with respect to the height,
and two filter functions ν1(t) ∈ R and ν2(t) ∈ R with

respect to the time. The penalty function is defined as

F (h) =

{
− 1
h2
d

(h− hd)
2(h+ hd) (0 ≤ h ≤ hd)

0 (h > hd)
, (18)

where a design parameter hd ≥ 0 denotes the reference

height. The filter functions are defined as

ν1(t) =





0 (t0≤ t<t1−∆t)

1
2

(
1−cos

(
∆t−t1+t

∆t
π
))

(t1−∆t≤ t≤ t1)
(19)

ν2(t) = (20)




1
2

(
1−cos

(
t0+t1−2t

2∆t̄ π
))

(
t0+t1−2∆t̄

2 ≤ t≤ t0+t1+2∆t̄
2

)

0
(
t0≤ t< t0+t1−2∆t̄

2 , t
0+t1+2∆t̄

2 <t≤ t1
)
,

where design parameters ∆t and ∆t̄ denote positive

constants. Fig. 3 illustrates ν1(t) and ν2(t).
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Fig. 3 Filter functions ν1 and ν2

Finally, we define the following cost function Γ̂ (ū, y):

Γ̂ (ū, y) :=
1

2

∫ t1

t0

(
(y(τ)−yd(τ))

⊤ν1(τ)Λy(y(τ)−yd(τ))

+ λhν2(τ)(F (h(y(τ))))
2 + ū(τ)⊤Λūū(τ)

)
dτ. (21)

Here, appropriate positive definite matrices Λy, Λū ∈

R5×5 represent weight matrices for the constraint to
make the trajectory periodic, and the input minimiza-

tion, respectively. An appropriate positive constant λh
represents a weighting coefficient for avoiding the foot

scuffing problem.

In order to derive the iteration law for ū, the Fréchet

derivative of the cost function (21) is calculated as

δΓ̂ (ū, y)(δū, δy) = 〈ν1Λy(y − yd), δy〉

+

〈
λhν2F (h(y)),

dF

dh

∂h

∂y
δy

〉
+ 〈Λūū, δū〉

=

〈
ν1Λy(y − yd) + λhν2F (h(y))

dF

dh

∂h

∂y

⊤

, δy

〉

+ 〈Λūū, δū〉

=: 〈∂yΓ̂ (ū, y), δy〉+ 〈∂ūΓ̂ (ū, y), δū〉

= 〈∂ūΓ̂ (ū, y) + (δΣ̄x
t0 (ū))∗(∂yΓ̂ (ū, y)), δū〉, (22)

where ∂yΓ̂ (ū, y) and ∂ūΓ̂ (ū, y) denote the partial gra-

dients of the cost function, respectively. It follows from

Eqs. (17) and (18) that

∂h(y)

∂y
=

(0,−lF sin(y2),−lT sin(y3), lF sin(y4), lT sin(y5))

dF

dh
=

{
− 1
h2
d

(h− hd)(3h+ hd) (0 ≤ h ≤ hd)

0 (h > hd)
.

(23)

From Eq. (22), the gradient of the cost function with

respect to ū, denoted by ∇Γ (ū), is given by

∇Γ (ū) = (24)

∂ūΓ̂ (ū, Σ̄
x
t0 (ū)) + (δΣ̄x

t0 (ū))∗(∂yΓ̂ (ū, Σ̄
x
t0 (ū))).

From the iteration law for ILC in Eq. (7), the relation

of the variational symmetry in Eq. (2) and the differ-

ence approximation in Eq. (5), the iteration law for the

proposed learning method is derived as

ū(i+1) = ū(i) −K(i)∂ūΓ̂ (ū(i), y(i))−
K(i)

ǫ(i)

×R
(
Σ̄ψ(i)(t

0)
(
w̄(i) + ǫ(i)R(∂yΓ̂ (ū(i), y(i)))

)

−Σ̄ψ(i)(t
0)(w̄(i))

)
, (25)

where ǫ(i) denotes a sufficiently small positive constant,

which is chosen to make the difference approximation

(5) valid with the desired precision. For a given pair

of the state x = (q⊤, p⊤)⊤ and the input ū, the litera-
ture [5] (see also [6]) gives a way to produce a pair of

the initial condition ψ(t0) and the input w̄ satisfying

the condition in Eq. (3). The initial condition in the

configuration and phase coordinates corresponding to
ψ(i)(t

0), denoted by Qψ
t0(i), and w̄(i) are given by

Qψ
t0(i) = (y(i)(t

1)⊤,−ẏ(i)(t
1)⊤)⊤,

w̄(i) = KPR(y(i))−KDR(ẏ(i)). (26)

Although the reference trajectory yd in Eq. (16) is

necessary to obtain the partial gradient ∂yΓ̂ (ū, y), cal-
culation of the nonlinear mapping gΠ in Eq. (15) is

required due to the desired velocity just before touch-

down ẏ−d = gΠ(yt0 , ẏt0). We propose a technique to es-

timate ẏ−d by the recursive least-squares with the stored

experimental data. Since the following relation holds:

dẏ− =
∂gΠ(y

+, ẏ+)

∂(y+, ẏ+)

(
dy+

dẏ+

)
, (27)

we approximate dy+, dẏ+ and dẏ− in Eq. (27) by differ-
ences between the desired coordinate and velocity just

after the collision (y+⊤
d , ẏ+⊤

d )⊤ and the stored data by

the ith experiment. We define the estimate value of ẏ−d
at the ith iteration as

˜̇y−d (i) := ẏ
−
(i)+

˜∂gΠ(y+, ẏ+)

∂(y+, ẏ+)

∣∣∣y+ =y
+
d

ẏ+ = ẏ
+
d

(
y+d − y+(i)
ẏ+d − ẏ+(i)

)
. (28)

We simultaneously calculate the estimations ˜̇y−d and

∂̃gΠ/∂(y
+, ẏ+) by the regularized recursive least-squares

with a forgetting factor. We transform Eq. (28) using

the relations y+d = yt0 and ẏ+d = ẏt0 into

ẏ−(i)=

(
˜∂gΠ(y+, ẏ+)

∂(y+, ẏ+)
, ˜̇y−d (i)

)

y+(i)− yt0

ẏ+(i)− ẏt0

1


 . (29)

For notational simplicity, we describe the relation (29)

as Y(i) = ΦX(i) hereafter. We define the following cost
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function for the regularized least-squares with a forget-

ting factor:

i∑

k=1

ρi−k(Y(k) − ΦX(k))
⊤(Y(k) − ΦX(k)) + α tr{ΦΦ⊤},

where ρ (0 < ρ ≤ 1) represents a constant forgetting

factor. Then, from [3], the recursive formula is given by

W(i) = ρW(i−1) +X(i)X
⊤
(i), (30)

Φ(i)= Φ(i−1)+
(
Y(i)−Φ(i−1)X(i)

)
X(i)

⊤
(
W(i)+αI11

)−1

with initial conditions W(0) = 011×11 and Φ(0) = 05×11.
From Eqs. (29) and (30), we can obtain the ith estima-

tions as

(
˜∂gΠ(y+, ẏ+)

∂(y+, ẏ+)
, ˜̇y−d (i)

)
= Φ(i). (31)

Consequently, from Eqs. (16) and (31), the reference

trajectory yd(t) involved in the partial gradient ∂yΓ̂ (ū, y)
in Eq. (25) can be estimated as

ỹd(i) =
˜̇y−d (i)(t− t1) + Cyt0 (32)

Let us summarize the proposed learning algorithm.

Step 0 : Set the total learning steps N , and appro-

priately positive definite matrices Λy and Λū and
positive constant λh as weighting parameters, posi-

tive constants ∆t, ∆t̄ and hd as design parameters,

positive definite matrices KP and KD in (13) and

an initial condition Qt0 = (q⊤t0 , q̇
⊤
t0)

⊤. Choose the

forgetting factor ρ satisfying 0 < ρ ≤ 1, and the
regularization factor α > 0 for the recursive least-

squares (30). Set i = 1 and go to Step 1.

Step 1: Execute laboratory experiment with the ini-

tial condition Qt0 and zero control input (or an ap-
propriate initial input). Let ū(i) and y(i) be the in-

put and the output data obtained by the ith ex-

periment, respectively. Let Y(1) = ẏ−(1) and X(1) =
(
y+⊤
(1) − y⊤

t0
, ẏ+⊤

(1) − ẏ⊤
t0
, 1
)⊤

, and solve Φ(1) via (30).

Then, obtain ỹd(1) from Eqs. (31) and (32). Set

k = 1. Then, go to Step 3k − 1.
Step 3k−1 : Execute the (3k−1)th laboratory exper-

iment via the following iteration law:

{
Qt0(3k−1) = (q(t1)⊤(3k−2),−q̇(t

1)⊤(3k−2))
⊤

ū(3k−1) = KPR(y(3k−2))−KDR(ẏ(3k−2))
. (33)

Then, go to Step 3k.

Step 3k : Execute the 3kth laboratory experiment via

the following iteration law with a sufficiently small

positive constant ǫ(k)





Qt0(3k) = Qt0(3k−1)

ū(3k) = ū(3k−1) + ǫ(k)R(ν1Λy(y(3k−2) − ỹd(k))

+ λhν2F (h(y(3k−2)))
dF
dh

∂h
∂y

⊤
)

.

(34)

Then, go to Step 3k+1.

Step 3k+1 : Execute the (3k+1)th laboratory exper-

iment via the following iteration law with an appro-
priate positive definite matrix K(k)





Qt0(3k+1) = Qt0(3k−2)

ū(3k+1) = ū(3k−2)−K(i)

(
Λūū(3k−2) +

1

ǫ(k)

×R(y(3k) − y(3k−1))
)

(35)

Solve Φ(k+1) via (30), and obtain ỹd(k+1) from Eqs.

(31) and (32).

If k = N , the learning procedure terminates. Oth-
erwise, set k = k + 1 and go to Step 3k − 1.

The 3-steps iteration laws imply that this learning

procedure needs three experiments to execute a single

update in (25). First, the (3k− 1)th iteration generates

a trajectory ψ by Eq. (26) with x = x(3k−2) so as to

satisfy the condition (3) for using the variational sym-
metry (5). Second, in the 3kth iteration, we calculate

the output Σ̄ψ(t0)(w̄+ǫR(∂yΓ̂ )) in Eq. (25) (note that

in this case ψ corresponds to x(3k−1)). Then, the in-

put and the output signals of (δΣ̄x
t0 (ū))∗(∂yΓ̂ ) in Eq.

(24) can be calculated from Eq. (25). With this infor-

mation, the gradient of the cost function with respect

to the input ∇Γ (ū) (see Eq. (24)) is obtained. Finally,
the input for the (3k + 1)th iteration is given by Eq.

(25) with these signals.

Remark 2 A state trajectory under which the configu-

ration coordinate q and the phase coordinate q̇ satisfy

q(t) = q(t1− t+ t0)

q̇(t) = −q̇(t1− t+ t0), ∀t ∈ [t0, t1] (36)

is called a symmetric trajectory. When a state trajec-

tory x with an input u is symmetric trajectory, the

condition (3) is satisfied with ψ = x and w = u. Then,
if the learning procedure is executed around a sym-

metric trajectory, the procedure corresponding to the

(3k − 1)th iteration in (33) is not necessary. Thus, one
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can utilize the following 2-steps iteration laws instead

of the 3-steps ones in (33), (34) and (35):





Qt0(2k) = Qt0(2k−1)

ū(2k) = ū(2k−1) + ǫ(k)R(ν1Λy(y(2k−1) − ỹd(k))

+ λhν2F (h(y(2k−1)))
dF
dh

∂h
∂y

⊤
)

, (37)





Qt0(2k+1) = Qt0(2k−1)

ū(2k+1) = ū(2k−1)−K(i)

(
Λūū(2k−1) +

1

ǫ(k)

×R(y(2k) − y(2k−1))
)

. (38)

5 Numerical example

We apply the proposed algorithm in the previous sec-
tion to the kneed biped with torso depicted in Fig.

1. The physical parameters of the robot are chosen as

mB = 10.0, mF = 3.0, mT = 2.0 kg, and lB = 0.70,

aB = 0.20, lF = lT = 0.50, aF = aT = 0.30 m. Gains

for the PD feedback (13) are selected as kp1 = 20,
kd1 = 15, kp2 = kp3 = kp4 = kp5 = 10 and kd2 =

kd3 = kd4 = kd5 = 6. We utilize the following design

parameters with respect to the cost function (21) as

hd = 5.0 × 10−2m and Λy = 30I5, Λū = 1 × 10−6I5,
λh = 10, those with respect to the filter functions ν1
in Eq. (19) and ν2 in Eq. (20) as ∆t = 8.0 × 10−2,

∆t̄ = 0.30 s, and those with respect to the learning al-

gorithm as ρ = 0.999, α = 2, K(·) = 5I5 and ǫ(·) = 1,

respectively. Although those parameters are empirically
determined, we observed that some different pairs of the

parameters also generate other walking gaits. Here, we

show the results of applying the 2-steps iteration laws

in Remark 2. We proceed 5000 steps of the learning
procedure with the following initial condition:

qt0 = (0.0,−0.12, 0.12,−0.12,−0.12),

q̇t0 = (0.0, 2.5, 0.1, 4.5,−2.5), (39)

which is empirically determined.

Figure 4 shows the history of the cost function (21)

along the iteration decreasing monotonically. It implies

that optimization is executed smoothly. Figure 5 shows

the estimation results of ||˜̇y−d (i)
− ẏ−d || by the recursive

formula (30). Since Fig. 5 is only verification of the esti-

mation, the true value ẏ−d is not utilized in the learning
procedure at all. From Figs. 4 and 5, both trajectory

learning and estimation of the discontinuous velocity

transition are achieved. The left figure in Fig. 6 repre-

sents the stick diagrams of the robot at the initial and
terminal times before learning, namely, the autonomous

motion from the initial condition (39). On the contrary,

the right figure represents those after learning, namely,

the resultant optimal gait. Those figures imply that a

walking motion seems to be generated eventually. We

also confirm that the resultant gait achieves proper foot

clearance.
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Fig. 6 Stick diagrams at the initial and terminal times before
learning (Left) and after learning (Right)

6 Conclusion

In this paper, we have proposed a modification of our

previous learning gait generation method by equipping
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a reference trajectory considering discontinuous veloc-

ity transitions properly. This method can generate an

optimal feedforward control input and the correspond-

ing periodic trajectory minimizing the L2 norm of the

control input. Although calculation of such reference
trajectory generally requires information of the transi-

tion mapping, the proposed method estimates the map-

ping by the least-squares with the stored experimental

data. Thus, it does not require the precise knowledge of
the plant system nor the discontinuous state transition

model. We have also proposed a technique to generate

an optimal gait not only being energy-efficient but also

avoiding the foot-scuffing problem. Finally, numerical

simulations of a kneed biped with torso have demon-
strated the validity of the proposed method.
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