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SUMMARY—This paper proposes a repetitive control type
optimal gait generation framework by executing learning control
and parameter tuning. We propose a learning optimal control
method of Hamiltonian systems unifying iterative learning con-
trol (ILC) and iterative feedback tuning (IFT). It allows on e to
simultaneously obtain an optimal feedforward input and tuning
parameter for a plant system, which minimize a given cost
function. In the proposed method, a virtual constraint by a
potential energy prevents a biped robot from falling. The strength
of the constraint is automatically mitigated by the IFT part of
the proposed method, according to the progress of trajectory
learning by the ILC part.
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1. INTRODUCTION

Recently, control of walking robots has become an active
research area. As the technology for walking robots evolves, an
optimization problem of gaits with respect to energy consump-
tion becomes increasingly important. However, it is difficult to
design a priori the optimal walking trajectory. Most of walking
pattern generation and control methods have been based on
the zero moment point (ZMP) criterion [1], [2], [3], [4]. This
method can generate a stable walking pattern of a walking
robot with multiple degrees of freedom (DoF), which means
that the robot does not fall, and its implementation is relatively
easy. However, the trajectory based on the ZMP is designed
heuristically in many cases and energy efficiency has not been
considered sufficiently. Passive dynamic walker [5], [6], [7],
[8] also attracts attention. This robot has a certain simple
structure and it walks down on a gentle slope with no actuation
but gravity. Walking control methods based on it have been
proposed by many researchers, e.g., [9], [10], [11]. Although
the generated gaits are energy efficient, these methods are
only applicable to certain specially structured robots so far.
Besides, walking control methods using virtual constraints
based on the output zeroing control are proposed in [12],
[13]. Since appropriately chosen holonomic constraints reduce
the order of the system, these methods are applicable to the
robots with multiple DoF, under actuation and so on. However,
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there is no systematic way to choose constraints achieving
a target motion, and such constraints often consume a lot
of control energy. Gait generation methods based on central
pattern generator [14] or statistical learning [15], [16],[17]
are also studied. The first method [14] considers a humanoid
robot and constructs a good controller for it, where a leg
trajectory is first generated by a network of oscillators and
then each joint trajectory is calculated via inverse kinematics.
However, the number of necessary oscillators and how to
couple them are heuristic. The second method [15] optimizes
a nominal trajectory via differential dynamic programming
(DDP), which is a second order local trajectory optimization
method. Although the authors empirically show that the gen-
erated gait overcomes certain disturbances by combining DDP
and a minimax criterion, a nominal trajectory is required and
the state and the cost function are discretized. Since the first
two methods are model-based learning, the plant models are
necessary. On the contrary, the latter two methods are model-
free and both are based on the policy gradient reinforcement
learning. The third method [16] considers a simple 3D biped
robot and generates an optimal control policy which makes the
robot robust against small slope changing. However, it requires
information of a nominal periodic trajectory and it cannot work
with high dimensional problems due to the so-called curse
of dimensionality. The last method [17] generalizes the path
integral stochastic optimal control approach [18]. Although
this approach generally requires the plant model, this method
provides a special control structure for the rigid body dynamics
such that a desired trajectory is parameterized as a policy and
the control policy is optimized. However, this method requires
the knowledge of the desired trajectory dynamics and it is only
applicable to the special control structure.

On the contrary, we have considered that physical properties
and learning control are useful tools to tackle this challenging
problem. So far, in [19], [20], [21], we have proposed an
optimal gait generation method by modifying iterative learning
control (ILC) based on a symmetric property called variational
symmetry of Hamiltonian systems [22]. Since this technique
is a motivation of the proposed method in this paper, whose
details are mentioned in the next paragraph, we first elaborate
on it. Hamiltonian systems [23], [24] have been introduced to
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represent physical systems and they explicitly possess good
properties for the control design such as passivity, symmetry
and so on. We consider biped robots as Hamiltonian systems,
rather than as just nonlinear systems, and take advantage of
their physical properties. ILC based on variational symmetry
of Hamiltonian systems [22] allows one to solve a class of op-
timal control problems by iteration of laboratory experiments.
Thanks to the symmetric property, it does not require the
precise knowledge of the plant model and it can directly deal
with infinite-dimensional optimal control problems without
any finite-dimensional approximation. This is a big difference
with the conventional ILC, e.g., [25] in that the conventional
ILC is only applicable to trajectory tracking control problems.
However, although the ILC method in [22] works well for
some control problems, there are mainly two difficulties to
apply it to the optimal gait generation problem. The first
one is that this method deals with a functional of the input
and the output as a cost function, but it cannot take the
time derivative of the output into account. Since this signal
represents the generalized velocity of mechanical systems,
its behavior severely affects the walking motion. The other
difficulty is that it cannot take discontinuous state transitions
into account. Such transitions involved in general walking
motions also have to be considered. In order to solve these
problems for the optimal gait generation, we have modified the
above ILC method in [19], [20], [21]. First, we proposed an
extension by employing a pseudo adjoint of the time derivative
operator. This method enables one to deal with a functional of
the time derivative of the output as a cost function. Second,
we considered a state transition mapping of the collision to
be a general nonlinear function with respect to the state just
before touchdown, and proposed an estimation method of the
mapping by the least-squares with stored experimental data.

Since our previous method in [19], [20], [21] is classified
as ILC framework, it requires that we repeat laboratory exper-
iments under the same initial condition as well as many con-
ventional results, e.g., [25], [22]. However, this initialization
procedure is sometimes strict, because it is difficult to realize
the desired initial velocity of the mechanical systems including
walking robots. To solve the problem, this paper propose a
new repetitive control type optimal gait generation framework
by executing ILC and a parameter tuning. Here, we refer to
iterative feedback tuning (IFT) based on variational symmetry
in [26] as the parameter tuning method of Hamiltonian sys-
tems. We newly propose a learning optimal control method
of Hamiltonian systems by unifying ILC and IFT. While ILC
[25], [22] is to find an optimal feedforward input minimizing
a given cost function, IFT [27], [28], [26] is to find optimal
parameters of a given feedback controller. A conventional
repetitive control method [29] is also a kind of a learning
method for a trajectory tracking control problem with time
periodic reference trajectories. Since an iteration procedure
of the proposed framework is automatically executed and
eventually an optimal periodic gait is expected to be generated,
it is classified as repetitive control rather than ILC. The idea of
the proposed method is as follows. First, we add a constraint
by adding a virtual potential energy to prevent the robot from
falling. Second, we execute the modified learning procedure

in [19], [20], [21] mentioned in the previous paragraph. The
virtual potential energy is designed so that the motion of
the robot is restricted to a symmetric trajectory. It saves
one resetting the initial conditions. Third, by regarding the
potential gain for the constraint as a tuning parameter, we
execute parameter tuning to mitigate the strength of the virtual
constraint automatically according to the progress of learning
control. Consequently, it is expected to generate an optimal
gait without constraint eventually. In this method, ILC andIFT
of Hamiltonian systems are utilized simultaneously. However,
since both methods influence each other, they regularly cannot
be used simultaneously. In order to take interference of both
methods into account, we introduce an extended system which
again has variational symmetry. The extended system instead
of the original plant system enables one to apply ILC and IFT
simultaneously. The proposed learning optimal control allows
one to simultaneously obtain an optimal feedforward input
and tuning parameter for a plant system, which minimizes a
cost function. We summarize the advantages of the proposed
method compared with the other (particularly learning) meth-
ods:

• it can generate an optimal trajectory as a solution to an
infinite-dimensional optimal control problem without any
discretization of the state space nor the time horizon nor
parameterization of the policy;

• since it can directly provide the gradient of the cost
function, we do not have to search the whole space;

• it does not require time-consuming calculations, such as
large-scale inverse matrices and calculations of dynamics,
nor an enormous amount of memory; and

• it does not require the plant model nor any information
of nominal/desired trajectory.

This paper grew out of our previous reports [30], [31]. In
[30], the interference of ILC and IFT was not handled well,
and advanced considerations are added to [31]. The remainder
of the paper is organized as follows. In section 2, ILC and
IFT methods based on variational symmetry of Hamiltonian
systems [22], [26] are referred to. In section 3, we introduce
a compass-like biped robot with torso as a plant system. In
section 4, we equip a constraint via a virtual potential energy,
and propose a unified learning optimal control method of
ILC and IFT. Then we summarize the proposed optimal gait
generation method. In section 5, some numerical simulations
demonstrate the effectiveness of the proposed method. In
sections 6 and 7, discussion and conclusions are given.

2. VARIATIONAL SYMMETRY OF HAMILTONIAN SYSTEMS

AND ITS APPLICATION TO ILC AND IFT

This section considers a Hamiltonian system and its sym-
metric property called variational symmetry [22]. This prop-
erty relates the variational system of the Hamiltonian system
and its adjoint one. Then, the ILC [22] and IFT [26] methods
utilizing this property are briefly referred to. These methods
play important roles in the proposed framework.
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2.1. Hamiltonian systems and variational symmetry

We consider a Hamiltonian system with dissipation [23],
[24] Σxt0 : U → Y : u 7→ y as






ẋ = (J(x)−R(x))
∂H(x, u)

∂x

⊤

, x(t0) = xt0

y = −
∂H(x, u)

∂u

⊤
. (1)

This system is one of the representations of the physical
systems and it includes not only the conventional Hamiltonian
systems but also passive electro-mechanical systems, mechan-
ical systems with nonholonomic constraints and so on. Here,
x(t) ∈ X , u ∈ U and y ∈ Y with Hilbert spaces X, U and
Y describe the state, the input and the output, respectively.
Typically, X = R

n and U, Y = L
m
2 [t0, t1] on a finite time

interval [t0, t1]. The structure matrixJ(x) ∈ R
n×n and the

dissipation matrixR(x) ∈ R
n×n are skew-symmetric and

symmetric positive semi-definite, respectively. The variational
systemδΣxt0 is the Fréchet derivative of the systemΣxt0 . The
definition of the Fréchet derivative is given as follows.

Definition 1: Consider an operatorf : Ξ̃ → Ψ with Banach
spacesΞ andΨ, and an open subset̃Ξ ⊂ Ξ. f is said to be
Fréchet differentiableat x ∈ Ξ̃ if there exists an operator
δf : Ξ̃ × Ξ → Ψ such thatδf(x)(ξ) is linear in ξ and the
following holds: For anyξ ∈ Ξ such thatx+ ξ ∈ Ξ̃,

f(x+ ξ) = f(x) + δf(x)(ξ) + o(‖ξ‖Ξ), (2)

where

lim
‖ξ‖Ξ→0

o(‖ξ‖Ξ)

‖ξ‖Ξ
= 0.

Under these circumstances,δf(x)(·) is called theFréchet
derivativeof f at x.
The calculation of the Fréchet derivative is also utilizedfor
derivation of the learning iteration law, e.g., Eqs. (11), (29)
and (41). Here, let us refer to the following lemma. It relates
the variational system to its adjoint one, which appears in
solving optimal control problems.

Lemma 1 ([22]): Consider the Hamiltonian systemΣxt0 in
(1). Suppose thatJ andR are constant and that there exists a
nonsingular matrixT ∈ R

n×n satisfying

J = −TJ T−1, R = TR T−1 (3)

∂2H(x, u)

∂(x, u)2
=

(
T Onn
Onn In

)
∂2H(x, u)

∂(x, u)2

(
T−1 Onn
Onn In

)

. (4)

Here, Ii and Oij representi × i identity matrix andi × j
zero matrix, respectively. Then the variational system ofΣxt0

is described by another linear Hamiltonian systemyv =
(δΣxt0 (u))(uv) :






ẋ = (J −R)
∂H(x, u)

∂x

⊤

, x(t0) = xt0

ẋv= (J −R)
∂Hv(x, u, xv, uv)

∂xv

⊤

yv= −
∂Hv(x, u, xv, uv)

∂uv

⊤

(5)

with the initial statexv(t0) = 0. Here, the controlled Hamil-
tonianHv(x, u, xv, uv) is given by

Hv(x, u, xv, uv) =
1

2

(
xv
uv

)⊤
∂2H(x, u)

∂(x, u)2

(
xv
uv

)

.

Furthermore, a state-space realization of the adjoint system
with zero terminal state, denoted byya = (δΣxt0 (u))∗(ua),
coincides with a time-reversal version of that of the variational
system with zero initial state (5). This property is called
variational symmetry of Hamiltonian systems.

Remark 1: In [22], the variational system with nonzero
initial state and its adjoint are also considered.
Regarding variational symmetry, the following theorem is
useful.

Theorem 1 ([26]): Consider the Hamiltonian system (1)
and suppose that conditions of Lemma 1 are satisfied. Suppose
moreover that, for two inputsv, w ∈ U , the corresponding
state trajectoriesφ(t), ψ(t) ∈ X, t ∈ [t0, t1] satisfy

R

(

∂2H(x, u)

∂(x, u)2

∣
∣
∣
∣x = φ
u = v

)

=
∂2H(x, u)

∂(x, u)2

∣
∣
∣
∣x = ψ
u = w

, (6)

where R represents the time reversal operator on[t0, t1]
defined by

R(u)(t) = u(t1 − t+ t0), ∀t ∈ [t0, t1]. (7)

Then variational symmetry leads to the following relationship:

(δΣφ(t
0)(v))∗ = R(δΣψ(t

0)(w))R. (8)

The above operator maps fromLm2 [t0, t1] to Lm2 [t0, t1].
Remark 2:A state trajectory under which the configuration

coordinateq and the phase coordinateq̇ satisfy

q(t) = q(t1− t+ t0)

q̇(t) = −q̇(t1− t+ t0), ∀t ∈ [t0, t1] (9)

represents a time-symmetric motion with respect to the middle
point of timet = (t0+ t1)/2. We call the trajectory satisfying
the condition (9) symmetric trajectory. Suppose a state trajec-
tory φ corresponding an inputv is symmetric trajectory. Then
the condition (6) in Theorem1 is satisfied withψ = φ and
w = v, and therefore the following simpler relationship than
Eq. (8) holds:

(δΣφ(t
0)(v))∗ = R(δΣφ(t

0)(v))R. (10)

From the relations (8) and (10), we convert the adjoint system
to the corresponding variational one, and calculate it by a
difference approximation. Then, the input-output mappingof
the adjoint system can be obtained by only using the input-
output data of the original system, see Eqs. (13) and (31).
This is a key technique of our learning framework based on
variational symmetry.

2.2. ILC and IFT based on variational symmetry

We review some results of ILC in [22] and IFT in [26]. They
have a common feature that they take advantage of variational
symmetry of Hamiltonian systems. The objective of ILC is to
find an optimal feedforward input which minimizes a given
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cost function, while that of IFT is to find optimal parameters
of a given feedback controller.

First, let us refer to ILC. Consider the systemΣxt0 : U → Y
in (1) and a cost function̂Γ(u, y) : U × Y → R. By utilizing
the relationy = Σxt0 (u), the cost function can be written by
Γ(u) : U → R := Γ̂(u,Σxt0 (u)). Let us calculate the Fréchet
derivative (Definition 1) of the cost function in order to obtain
the gradient with respect to the inputu as follows:

δΓ(u)(δu) = 〈∇uΓ̂(u, y), δu〉U + 〈∇yΓ̂(u, y), δy〉Y

= 〈∇uΓ̂(u, y)+(δΣxt0 (u))∗(∇yΓ̂(u, y))
︸ ︷︷ ︸

=: ∇Γ(u)

, δu〉U .

(11)

The well-known Riesz representation theorem and the linearity
of the Fréchet derivative guarantee that there exist functions
∇uΓ̂(u, y) and∇yΓ̂(u, y) as above. Since∇Γ(u) in Eq.(11)
represents the gradient of the cost function with respect to
u, the steepest descent method implies that one can reduce
the cost function down at least to a local minimum by the
following iteration law with a positive definite matrixK(i):

u(i+1) = u(i) −K(i)∇Γ(u(i)). (12)

Here, the subscript(i) denotes thei th iteration in a laboratory
experiment. However, calculation of the gradient∇Γ(u) gen-
erally requires the precise knowledge of the plant systemΣxt0 ,
because it contains the output signal of the adjoint system
(δΣxt0 (u))∗ corresponding to the input signal∇yΓ̂(u, y). If
the assumption in Theorem 1 holds, the following approxima-
tion is obtained from Eq. (8) with a sufficiently small constant
ǫ > 0:

(δΣxt0 (u))∗(∇yΓ̂(u, y)) = R(δΣψ(t
0)(w))(R(∇y Γ̂(u, y)))

≈
Σψ(t

0)(w + ǫR(∇yΓ̂(u, y)))− Σψ(t
0)(w)

ǫ
. (13)

The approximation (13) enables one to execute the iteration
procedure with Eq. (12) by only using the input-output data
of the plant systemΣxt0 .

Second, let us refer to IFT. Here, we consider a feedback
system of a Hamiltonian system with a generalized canoni-
cal transformation [32] so that the feedback system is also
described by another Hamiltonian system in the form of (1).
Therefore, the system parameters of the closed loop system
Hc, Jc and Rc generally depend on the parameters of the
feedback controller to be adjusted. For simplicity, in thispaper,
it is supposed that only the Hamiltonian functionHc depends
on the tuning parameterρ ∈ R

s. The case whereJc andRc
also depend onρ is considered in [26]. Consider a feedback
system of the form (1) with a HamiltonianHc(x, u, ρ). In
the IFT method proposed in [26], the tuning parameter is
considered to be a virtual input for the Hamiltonian system,
and a corresponding output is induced so that the input-output
map has variational symmetry. Let us introduce the follow-
ing zeroth-order hold operatorh, which maps the parameter
ρ ∈ R

s to uρ ∈ Ls2[t
0, t1] in order to define a virtual input:

h : Rs→ Ls2[t
0, t1] : uρ(t) := (h(ρ))(t) ≡ ρ, ∀t ∈ [t0, t1]. (14)

For the virtual inputuρ, let us consider the following input-
output mapyρ = Σ

x
t0
,u

ρ (uρ):






ẋ = (J −R)
∂Hc(x, u, uρ)

∂x

⊤

, x(t0) = xt0

yρ = −
∂Hc(x, u, uρ)

∂uρ

⊤ . (15)

Since this mapΣ
x
t0
,u

ρ is a Hamiltonian system of the form
(1), Lemma 1 and Theorem 1 imply that it has variational
symmetry with some conditions. Here, the following property
with respect toh defined in Eq. (14) is exhibited, which is
utilized in the IFT algorithm.

Lemma 2 ([26]): h∗ is characterized by the following equa-
tion for anyξ ∈ Ls2[t

0, t1]:

h∗(ξ) =

∫ t1

t0
ξ(t) dt. (16)

By utilizing the input-output map (15) and Eq. (16), an
iteration algorithm for IFT can be derived in the manner
similar to the case of ILC. Roughly speaking, consider the
system (15) and a cost function̂Γρ(uρ, yρ) : Ls2 × Ls2 → R.
By replacingu, y, Σxt0 andΓ̂ in Eq. (11) withuρ, yρ, Σ

x
t0
,u

ρ

and Γ̂ρ, we haveδΓρ(uρ)(δuρ) = 〈∇Γρ(uρ), δuρ〉. From the
linearity of the Fréchet derivative and the operatorh, that is,

δh(ρ) dρ = h(ρ+ dρ)− h(ρ) + o(‖ dρ‖)

= h(dρ) + o(‖ dρ‖)

and from Definition 1, we have

δuρ = δh(ρ) dρ = h(dρ). (17)

Then,δΓρ(uρ)(δuρ) reduces to

〈∇Γρ(uρ), δuρ〉 = 〈h∗(∇Γρ(uρ)), dρ〉 (18)

Sinceh∗(∇Γρ(uρ)) in Eq.(18) represents the gradient of the
cost function with respect to the tuning parameterρ, the
iteration law for IFT is given by with a positive definite matrix
Kρ(i) (for calculation ofh∗, see Eq. (16)):

ρ(i+1) = ρ(i) −Kρ(i)

∫ t1

t0
∇Γρ(uρ(i)(t)) dt. (19)

3. DESCRIPTION OF THE PLANT

Let us consider a full-actuated planar compass-like biped
robot with a torso depicted in Fig. 1. The legs without knees
and the torso are rigid bars, and they are connected by a
frictionless hinge at the hip. A 1-period of walking describes
the period between the take-off of one foot from the ground
and its subsequent landing. Table I shows physical parameters
and variables. In this paper, we define the inputu as

u = (u1, u2, u3)⊤ := (v1 − v3,−v2, v2 + v3)⊤ (20)

in order to simplify the input-output relation in the Hamil-
tonian form mentioned later. Furthermore, We assume the
following on this robot.

Assumption 1:There exists a foot link whose thickness and
mass can be ignored, and the ankle torquev1 can be occurred
relative to it.
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Fig. 1. Model of the compass gait biped with a torso

TABLE I
PARAMETERS AND VARIABLES

Notation Meaning Unit
mT Torso mass kg
mL Leg mass kg
a Length frommL to the ground m
b Length from the hip tomL m
l = a+ b Total leg length m
c Length from the hip tomT m
g Gravity acceleration m/s2

q1 Stance leg angle w.r.t vertical rad
q2 Swing leg angle w.r.t vertical rad
q3 Torso angle w.r.t vertical rad
v1 Ankle torque Nm
v2 Torque relatively applied from torso to swing leg Nm
v3 Torque relatively applied from torso to stance leg Nm

Assumption 2:The foot of the swing leg does not bounce
back nor slip on the ground at the collision (inelastic impulsive
impact is assumed).

Assumption 3:Transfer of support between the stance and
the swing legs is instantaneous.

Assumption 4:The foot-scuffing during the single support
phase can be ignored.
We use number of notations with respect to the state. Table II
summarizes them.

A typical mechanical system can be described by a Hamil-
tonian system in (1) with the statex=(q⊤, p⊤)⊤ ∈ R

2m as

(
q̇
ṗ

)

=
((

Omm Im
−Im Omm

)

−
(
Omm Omm

Omm RD

))





∂H(q,p,u)
∂q

⊤

∂H(q,p,u)
∂p

⊤





y = −
∂H(q, p, u)

∂u

⊤

= q (21)

with the Hamiltonian

H(q, p, u) =
1

2
p⊤M(q)−1p+ U(q)− u⊤q. (22)

Here, a positive definite matrixM(q) ∈ R
m×m denotes the

inertia matrix. The generalized momentump ∈ R
m is given

by p :=M(q)q̇. A positive semi-definite matrixRD ∈ R
m×m

denotes the friction coefficients, and a scalar functionU(q) ∈
R denotes the potential energy of the system. The dynamics of
the robot depicted in Fig.1 is described as a typical mechanical
system in (21) withm = 3, the friction coefficientsRD = O33

TABLE II
SOME NOTATIONS

Notation Meaning

q := (q1, q2, q3)⊤ Angles of legs and a torso
q̇ := (q̇1, q̇2, q̇3)⊤ Angular velocities of legs and a torso
p := (p1, p2, p3)⊤ Generalized momentum
x := (q⊤, p⊤)⊤ State
Q := (q⊤, q̇⊤)⊤ Angles and their velocities
(qt0 , pt0) := (q(t0), p(t0)) Initial state
(qt1 , pt1) := (q(t1), p(t1)) Terminal state
(·)−/+ Just before/after a discontinuous transition

Note thatx− ≡ xt1 .

and the following inertia matrix and the potential energy:

M(q) =
(
mT l2 +mLl

2 +mLa
2

−mLbl cos(q
1
−q2) mT cl cos(q1−q3)

−mLbl cos(q
1
−q2) mLb

2 0
mT cl cos(q1−q3) 0 mT c2

)

U(q) =

{mL((a+l) cos q
1−b cos q2)+mT (l cos q

1+c cos q3)}g.

The outputy corresponding to the inputu defined in Eq. (20)
is given byy = q. At the end of a walking period, a collision
between a leg and the ground causes a discontinuous change
in angular velocities. Assumptions 2 and 3 imply that there
exists no double support phase. Since the support and swing
legs change each other instantly, we have

q+ =

(
0 1 0
1 0 0
0 0 1

)

q− =: Cq−, (23)

whereq− andq+ denote the angles just before and just after
the collision, respectively (see, Table II). Following thelaw of
conservation of the angular momentum, a transition mapping
can be written aṡq+ = Π̄(q−)q̇−. The detail of the mapping
Π̄(q−) is omitted here. See, e.g., [12].

Before the ILC method mentioned in Subsection 2.2 is
applied, feedback controllers are typically employed to the
control system in order to render the system asymptotically
stable. However, the feedback system is not generally Hamil-
tonian system of the form (1) any more with arbitrary feedback
controller. In [32], a generalized canonical transformation,
which is a pair of feedback and coordinate transformations
preserving the Hamiltonian structure in (1), is proposed. It is
known that in the case of a typical mechanical system in (21),a
simple PD feedback preserves the structure of the Hamiltonian
system [32], [22]. Let us consider a PD controller

u = −KP q −KDq̇ + ū, (24)

where ū is a new input for ILC andKP ,KD ∈ R
m×m are

symmetric positive definite matrices.
Remark 3 ([22]): Consider the feedback system of the form

(21) by a PD controller (24). If the inertia matrixM(q) of
the system does not depend on the configuration coordinate
q, then the conditions (3) and (4) in Lemma 1 are satisfied
with the following nonsingular block diagonal matrixT =
diag{Im,−Im}. Otherwise, however, if PD gainsKP andKD
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in (24) are chosen large enough, the conditions (3) and (4) are
satisfied approximately with the same matrixT .

In what follows, we consider the feedback system by a PD
controller (24) with sufficiently large gainsKP andKD so
that the conditions in Lemma 1 are satisfied approximately,
and derive the iteration law for the inputū in Eq. (24).

4. MAIN RESULTS

This section proposes a repetitive control type optimal
gait generation framework. In subsection 4.1, we introduce
a constraint by adding a virtual potential energy in order
to prevent the robot from falling and to continue learning
procedures. Then, the concept of the proposed framework is
outlined. In subsection 4.2, we propose a learning optimal
control method of Hamiltonian systems by unifying ILC and
IFT mentioned in subsection 2.2. Since both the ILC and IFT
methods influence each other, they regularly cannot be used
simultaneously. The proposed method takes the interference
of both methods into account. In subsection 4.3, we define a
cost function and exhibit a proposed algorithm.

4.1. Constraints by virtual potential energies

In the literatures [12], [13], walking control methods using
virtual constraints based on the output zeroing control are
proposed. In [13], particularly, they can achieve stable sym-
metric walking gaits by using another property of Hamiltonian
systems other than those used in this paper. They set the output
functiony = q1+q2 to zero by the output zeroing control and
keep the leg angles bounded by a leg exchange scheme [13].
As a consequence, they guarantee that the robot does not fall
and obtain symmetric walking gaits satisfyingq1 + q2 = 0.

On the contrary, we use a similar idea of the virtual
constraint to prevent the robot from falling, but do not use
the output zeroing control. There are two reasons: one is that
the output zeroing control requires the precise knowledge of
the plant system and the other is that such constraints consume
a lot of control energy. We add a virtual potential energyPc
such as Eq. (25) to produce a similar effect to [13]

Pc :=
kc
2
(q1 + q2)2. (25)

Here, the gain parameterkc represents the constraint strength.
We let kc sufficiently large at the beginning of the learning
steps so that the trajectory of the robot is restricted to a
symmetric one, i.e.,q1 + q2 = 0 holds. Due to [13], it is
expected that the robot does not fall. The advantages of this
method instead of the output zeroing control are as follows.
First, it does not require the model parameters of the plant
system, since the potential energy (25) can be generated by a
simple feedback controller

u = −KP q −KD q̇ + ū− kcAcq, Ac :=

(
1 1 0
1 1 0
0 0 0

)

. (26)

The feedback system is depicted in Fig. 2. Second, after adding
the potential energy, the plant system preserves the Hamil-
tonian structure and the constraint parameterkc is explicitly
contained in a new Hamiltonian. The controller (26) converts

++

-

-
Σ

KD

KP

-

q

q
.

uu

Acck

Fig. 2. Closed loop system of the local PD feedback and the virtual potential
one

the dynamics of the robot into another Hamiltonian system
of the form (21) with a new Hamiltonian̄H , a new structure
matrix J̄ and a new dissipation matrix̄R as

H̄(q, p, ū, kc)

=
1

2
p⊤M(q)−1p+ U(q) +

1

2
q⊤(KP + kcAc)q − ū⊤q,

J̄ =
(
O33 I3
−I3 O33

)

, R̄ =
(
O33 O33

O33 KD

)

. (27)

By regardingkc as a tuning parameter, we execute IFT men-
tioned in subsection 2.2 to adjust the constraint strength,and
we generate a walking trajectory by applying ILC simultane-
ously. The concept of the proposed framework is summarized
as follows.

Step 1 :Add a virtual potential energy to restrict the motion
of the robot to a symmetric trajectory. Then, let the
constraint parameterkc sufficiently large to expect
that the robot does not fall.

Step 2 : By utilizing a unified learning optimal control
method proposed in the next subsection, ILC gen-
erates an optimal walking gait and, simultaneously,
IFT mitigates the constraint parameter automatically
according to the progress of learning control.

Step 3 : Repeat Step 2 every one cycle of walking.
As a result, it is expected that an optimal gait without

the constraint or with sufficiently small one is generated
eventually. The feature of the proposed framework is that
the robot keeps on walking and improves the walking gait,
because the robot does not fall due to Step1. From this aspect,
our method is classified as repetitive control [29] rather than
ILC [25], [22]. It also differs from the conventional methods
using virtual constraints in that it automatically optimizes the
strength of the constraints.

4.2. Unified learning method of ILC and IFT

Here, we propose a learning optimal control method of
Hamiltonian systems by unifying ILC [22] and IFT [26] by
introducing an extended system which again has variational
symmetry. This method enables one to execute ILC and IFT
simultaneously, and plays an important role in our proposed
framework mentioned in the previous subsection.

Let us define the extended inputue by ue := (ū⊤, u⊤ρ )
⊤ ∈

Ue = U × Uρ, the extended outputye by ye := (y⊤, y⊤ρ )
⊤ ∈

Ye = Y × Yρ, whereUρ, Yρ = Ls2[t
0, t1] and HamiltonianHe
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by He(x, ue) := Hc(x, ū, uρ). Then we have the following
extended systemye = Σ

x
t0

e (ue):






ẋ = (J −R)
∂He(x, ue)

∂x

⊤

, x(t0) = xt0

ye = −
∂He(x, ue)

∂ue

⊤
. (28)

Since the extended system (28) has the form of (1), it can
be easily proven that this system has variational symmetry
with certain conditions. Then we consider a cost function
Γ̂e(ue, ye) : Ue × Ye → R. The Fréchet derivative of the cost
function can be calculated as

δΓ̂e(ue, ye)(δue, δye)

= 〈∇ue
Γ̂e(ue, ye), δue〉Ue

+ 〈∇ye Γ̂e(ue, ye), δye〉Ye

= 〈∇ue
Γ̂e + (δΣ

x
t0

e (ue))
∗(∇ye Γ̂e), δue〉Ue

, (29)

where∇ue
Γ̂e(ue, ye) and∇ye Γ̂e(ue, ye) represent the partial

gradients of the cost function with respect toue and ye,
respectively. It follows from the definition ofue and Eq. (17)

δue =

(
δū
δuρ

)

=

(
δū

h(dρ)

)

. (30)

From Eq. (30), Equation (29) reduces to

δΓ̂e(ue, ye)(δue, δye)

=

〈(
id 0
0 h∗

)(

∇ue
Γ̂e+(δΣ

x
t0

e (ue))
∗(∇ye Γ̂e)

)

,

(
δū
dρ

)〉

U×Rs

=

〈(
∇ūΓ̂e

h∗(∇uρ
Γ̂e)

)

+

(
id 0
0 h∗

)

R(δΣ
ψ

t0

e (we))R(∇ye Γ̂e)

,

(
δū
dρ

)〉

U×Rs

≈

〈(
∇ūΓ̂e

h∗(∇uρ
Γ̂e)

)

+

(
R 0
0 h∗

)

× (31)

(

Σ
ψ

t0

e (we+ǫeR(∇ye Γ̂e))−Σ
ψ

t0

e (we)

ǫe

)

,

(
δū
dρ

)〉

U×Rs

,

whereψt0 andwe := (w⊤, h(ρ)⊤)⊤ should be chosen such
that the condition (6) in Theorem 1 holds. In the last approx-
imation, the relationh∗R = h∗R∗ = (Rh)∗ = h∗ is utilized
(note that it follows from Eq. (7) thatR∗ = R). Consequently,
the optimal learning control law unifying ILC and IFT is given
by






xt0(3i+1) = ψt0(i)

ū(3i+1) = w(i)

ρ(3i+1) = ρ(3i)







xt0(3i+2) = ψt0(i)

ū(3i+2) = w(i) + ǫe(i)R(∇yΓ̂e(3i))

uρ(3i+2) = h(ρ(3i)) + ǫe(i)R(∇yρ Γ̂e(3i))

(32)







xt0(3i+3) = xt0(3i)

ū(3i+3)= ū(3i)−K(i)

(
∇ūΓ̂e(3i)+

1

ǫe(i)
R(y(3i+2)−y(3i+1))

)

ρ(3i+3) = ρ(3i) −Kρ(i)

(
∫ t1

t0
∇uρ

Γ̂e(3i)

+
1

ǫe(i)
(yρ(3i+2) − yρ(3i+1)) dt

)

,

provided that the initial control input̄u(0) ≡ 0 or an appro-
priate initial input, the initial parameterρ(0) and the initial
conditionxt0(0) are appropriately chosen, respectively. Here,
ǫe(·) denotes a sufficiently small positive constant and an
appropriate positive definite matricesK(·) andKρ(·) represent
gains, respectively. Here, the conditionψe,t0(i) andw(i) are
chosen such that it satisfies the condition (6) in Theorem 1 with
the trajectory governed by the pair ofxt0(3i) and ū(3i) with
ρ(3i). A concrete algorithm exhibiting how to selectψe,t0(i)
andw(i) is given for mechanical systems in [26], [21].

We supplement the derivation of the control law (32). The
triple iteration laws imply that this learning procedure needs
three experiments to execute a single update in (12). First,the
(3i+1)th iteration generates a trajectoryψ corresponding to
φ = x(3i) such that the condition (6) in Theorem 1 holds.
Second, in the (3i+2)th iteration, we calculate the output
Σ
ψ

t0

e (we + ǫeR(∇ye Γ̂e)) in Eq. (31) (note that in this caseψ
corresponds tox(3i+1)). It follows from we = (w⊤, h(ρ)⊤)⊤

and∇ye Γ̂e = (∇yΓ̂
⊤
e ,∇yρ Γ̂

⊤
e )

⊤ that

we + ǫeR(∇ye Γ̂e) =

(
w + ǫeR(∇yΓ̂e)

h(ρ) + ǫeR(∇yρ Γ̂e)

)

. (33)

Note thatū(3i+2) and uρ(3i+2) follows from Eq. (33). Then
the input and the output signals ofδΣ

x
t0

e (ue)
∗(∇ye Γ̂e) can

be calculated from the last approximation in Eq. (31). With
this information, the gradient of the cost function with respect
to the input∇Γe(ue) with Γe(ue) := Γ̂e(ue,Σe(ue))(see
also Eq. (11)) is obtained. Finally, the input for the (3i+3)th
iteration is given by Eq. (12) with these signals. That is, the
(3i+3)th iteration law comes from the following calculation:
(
δū(3i+3)

dρ(3i+3)

)

:=

(
ū(3i+3) − ū(3i)
ρ(3i+3) − ρ(3i)

)

= −

(
K(i) 0
0 Kρ(i)

)

∇Γe(ue(3i))

≈ −

(
K(i) 0
0 Kρ(i)

){(
∇ūΓ̂e(3i)

h∗(∇uρ
Γ̂e(3i))

)

+
1

ǫe

(
R 0
0 h∗

)(
y(3i+2) − y(3i+1)

yρ(3i+2) − yρ(3i+1)

)}

.

Remark 4: If the learning procedure is executed around
a symmetric trajectory and a trajectory in each experiment
approximately satisfies the condition (9), then one can utilize
the following procedure instead of that in (32):






xt0(2i+1) = xt0(2i)

ū(2i+1) = ū(2i) + ǫe(i)R(∇yΓ̂e(2i))

uρ(2i+1) = h(ρ(2i)) + ǫe(i)R(∇yρ Γ̂e(2i))

(34)
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





xt0(2i+2) = xt0(2i)

ū(2i+2)= ū(2i)−K(i)

(

∇ūΓ̂e(2i)+
1

ǫe(i)
R(y(2i+1)−y(2i))

)

ρ(2i+2) = ρ(2i) −Kρ(i)

(
∫ t1

t0
∇uρ

Γ̂e(2i)

+
1

ǫe(i)
(yρ(2i+1) − yρ(2i)) dt

)

.

Around a symmetric trajectory, the condition (9) is satisfied
with ψ = φ andw = v due to Remark 2. Here,φ represents
the statex and v represents the learning input̄u. So, the
procedure corresponding to the (3i+1)th iteration in (32) is not
necessary. The learning law (34) follows from that the (2i+1)th
and the (2i+2)th procedures correspond to the (3i+2)th and the
(3i+3)th procedures in (32), respectively.

Remark 5:Although the proposed algorithm requires time-
varying feedback gains during the learning procedure in
generating perturbation signals (seeuρ(3i+2) in the iteration
procedure (32) oruρ(2i+1) in another procedure (34)) in order
to approximate output signals of the variational system by uti-
lizing Eq. (31), eventually, a generated optimal feedback gain
is constant. Unless time-varying feedback gains are available,
we substitute a feedforward input with the previous output
signal. For example, the following procedure is substituted for
the original one in (32)






xt0(3i+2) = ψt0(i)

ū(3i+2)=w(i)+ǫe(i)

(

R(∇yΓ̂e(3i))+R(∇yρ Γ̂e(3i))y(3i)

)

ρ(3i+2) = ρ(3i)

.

4.3. Optimal gait generation algorithm

Let us consider the following cost function:

Γ̂(y, ẏ, ū, yρ, uρ) :=

1

2

∫ t1

t0
(y(τ)−CR(y)(τ))⊤ν1(τ)Λy(y(τ)−CR(y)(τ)) dτ

+
1

2

∫ t1

t0
Fv(ẏ(τ)−vref )

⊤ν2(τ)ΛẏFv(ẏ(τ)−vref ) dτ

+
1

2

∫ t1

t0
ū(τ)⊤Λūū(τ) dτ +

γyρ
2

∫ t1

t0
y2ρ(τ) dτ

+
γuρ

2

∫ t1

t0
u2ρ(τ) dτ, (35)

where appropriate positive definite matricesΛy,Λẏ,Λū ∈
R

3×3 represent weight matrices and appropriate positive con-
stantsγyρ and γuρ

represent weighting coefficients, respec-
tively. The first term of the cost function (35) is also equipped
in [19], [30], which is a necessary condition for a periodic
trajectory such thatq1(t0) ≡ q2(t1) andq2(t0) ≡ q1(t1). Fig.
3 illustrates the condition. Let us note that although another
necessary condition with respect toq̇ can be utilized as in [19],
where initial angular velocities are equivalent to velocities
just after touch down. However, it is not equipped here for
simplicity of iteration law. In the second term,vref ∈ R

3

t
0

t
1 t

2SupportSwing

t
0

t
1

t
2Support Swing

t1

t0

t0
t1

q1

q2q2

q1

Fig. 3. Illustration of the restraint condition of the cost function

represents a constant reference angular velocity,ν1(t) ∈ R

andν2(t) ∈ R denote filter functions defined respectively by

ν1(t) :=







1
2

(

1−cos
(
t0+∆t−t

∆t π
))

(t0≤ t≤ t0+∆t)

0 (t0+∆t<t≤ t1)
, (36)

ν2(t) := (37)






0 (t0≤ t<
t1−t0

2
−∆t̄)

1
2

(

1−cos

(

−
t1−t0

2
+∆t̄+t

∆t̄
π

))

( t
1
−t0

2
−∆t̄≤ t<

t1−t0

2
)

1
2

(

1−cos

(

t1−t0

2
+∆t̄−t

∆t̄
π

))

( t
1
−t0

2
≤ t<

t1−t0

2
+∆t̄)

0 ( t
1
−t0

2
+∆t̄≤ t≤ t

1)

,

where design parameters∆t and∆t̄ denote positive constants.
Fig. 4 illustratesν1(t) and ν2(t). For anyζ ∈ R

r, a penalty

t
t
1

t
0

ν

1

t
0
∆t+

0

1

t
t
1

t
0

ν

1

0

2

t
1 t

0

2

∆t ∆t

Fig. 4. Filter functionsν1 andν2

functionFv : Rr → R
r is defined as

[Fv(ζ)]
i =

{
kFv

(ζi)2 if ζi < 0

0 otherwise
, (i = 1, 2, · · · , r), (38)

where an appropriate positive constantkFv
represents strength

of the penalty. In what follows, the dimensionr of the penalty
function shall accordingly change with that of the argument
(in the case of Eq. (35),r = 3). The second term encourages
the robot to achieve an appropriate constant velocity in the
middle of walking. As a consequence, it is aimed at specifying
the walking direction (forward or backward) and a rough
walking speed, and preventing the robot from stopping during
the learning. The third and fourth terms are to minimize
the control input and the feedback input generating virtual
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potential energy, respectively. The last term is to mitigate the
strength of the virtual constraint.

In order to utilize variational symmetry of the extended
system for (27), let us rewrite the cost function (35) as

Γ̂(y, ẏ, ū, yρ, uρ) ≡

1

2

∫ t1

t0
(ye(τ)−CeR(ye)(τ))

⊤Λye(τ)(ye(τ)−CeR(ye)(τ)) dτ

+
1

2

∫ t1

t0
Fv(ẏe(τ)−ve,ref )

⊤Λẏe(τ)Fv(ẏe(τ)−ve,ref ) dτ

+
1

2

∫ t1

t0
ue(τ)

⊤Λue
ue(τ) dτ =: Γ̂e(ye, ẏe, ue), (39)

where

Ce := diag{C, 0} ∈ R
4×4 , ve,ref := (vref , 0)

⊤ ∈ R
4,

Λye(t) := diag{ν1(t)Λy, γyρ}, Λẏe(t) := diag{ν2(t)Λẏ, 0},

Λue
:= diag{Λū, γuρ

} ∈ R
3×3 (40)

and, in this case, the dimension ofFv is r = 4.
Since the virtual constraint introduced in Subsection 4.1

restricts the motion of the robot to a symmetric trajectory,it
is supposed that the learning procedure is executed around a
symmetric trajectory. Now let us derive the concrete updating
law based on the optimal learning control procedure (34) in
Remark 4.

Let us calculate the Fréchet derivative of the cost function
(39) as follows:

δΓ̂e(ye, ẏe, ue)(δye, δẏe, δue)

=〈Λye(ye−CeR(ye), δye−CeR(δye)〉Ye
+〈ΛẏeFv(ẏe−ve,ref )

, δFv(ẏe−ve,ref )Dt(δye)〉Ye
+ 〈Λue

ue, δue〉Ue

= 〈(id−RCe)Λye(id−CeR)(ye)−Dt ((δFv(ẏe−ve,ref ))
∗Λẏe

× Fv(ẏe−ve,ref )) , δye〉Ye
+ 〈Λue

ue, δue〉Ue

=: 〈∇ye Γ̂e, δye〉Ye
+ 〈∇ue

Γ̂e, δue〉Ue

=

〈(
∇yΓ̂e
∇yρ Γ̂e

)

,

(
δy
δyρ

)〉

Ye

+

〈(
∇ūΓ̂e
∇uρ

Γ̂e

)

,

(
δū
δuρ

)〉

Ue

. (41)

Here,Dt denotes the time derivative operator. Since the cost
function (39) is a functional of the time derivative of the output
ẏe, the previously proposed technique with a pseudo adjoint of
Dt in [19] is utilized in the calculation. Briefly put,D∗

t = −Dt
holds under certain conditions. See [19], [21], for the details.
From Eq. (38),(δFv(ẏe−ve,ref))∗ can be calculated as

[(δFv(ẏe−ve,ref ))
∗]ij =







0 (i 6= j)

{
2kFv

(ẏie−v
i
e,ref ) if ẏie−v

i
e,ref < 0

0 otherwise
(i = j)

, (i, j = 1, 2, 3, 4). (42)

Then, The partial gradients∇yΓ̂e,∇yρ Γ̂e,∇ūΓ̂e and∇uρ
Γ̂e

are calculated from Eq. (41) as

(
∇yΓ̂e
∇yρ Γ̂e

)

=

(
id−RC 0

0 id

)(
ν1Λy O21

O12 γyρ

)(
id− CR 0

0 id

)

×

(
y
yρ

)

−Dt

((
(δFv(ẏ−vref ))

∗ 0
0 (δFv(ẏρ−0))∗

)

×

(
ν2Λẏ O21

O12 0

)(
Fv(ẏ−vref )
Fv(ẏρ−0)

))

= ((id−RC)ν1Λy(id− CR)(y) −Dt((δFv(ẏ−vref ))
∗ν2

× ΛẏFv(ẏ−vref )), γyρyρ)
⊤ (43)

and
(
∇ūΓ̂e
∇uρ

Γ̂e

)

=

(
Λūū
γuρ

uρ

)

. (44)

From the iteration law (34) and Eqs. (43) and (44), let us
summarize the proposed learning algorithm.

Step0 :Set appropriate positive definite matricesΛy,Λẏ
and Λū as weight matrices, positive constantsγyρ
andγuρ

as weight coefficients and positive constants
∆t, ∆t̄ and kFv

as design parameters for the filter
functionsν1 in (36) andν2 in (37) and the penalty
function Fv in (38). Set the initial control input
ū(0) appropriately (or set̄u(0) ≡ 0) and a constant
reference angular velocityvref and let the constraint
parameterkc(0) sufficiently large. Let the robot start
walking under an appropriate initial conditionxt0 .
Set i = 0. Then go to Step 1.

Step2i+1: During the (2i+1)th walking cycle, one utilizes
the following controller

u = −KP q −KDq̇ − uρ(2i+1)Acq + ū(2i+1). (45)

Here, the time-varying feedback gain for the virtual
constraintuρ(2i+1) and the feedforward control input
ū(2i+1) are given by

{

ū(2i+1) = ū(2i) + ǫe(i)R(∇yΓ̂e(2i))

uρ(2i+1) = uρ(2i) + ǫe(i)R(∇yρ Γ̂e(2i))
, (46)

whereǫe(i) denotes a sufficiently small positive con-
stant and

∇yΓ̂e(2i) = (id−RC)ν1Λy(id−CR)(y(2i))

−Dt((δFv(ẏ(2i)−vref))
∗ν2ΛẏFv(ẏ(2i)−vref)),

∇yρ Γ̂e(2i) = γyρyρ(2i).

For (δFv)∗, see Eq. (42). Then go to Step 2i+2.
Step2i+2: During the (2i+2)th walking cycle, one utilizes

the following controller

u = −KP q −KD q̇ − kc(2i+2)Acq + ū(2i+2). (47)

Here, the feedback gainkc(2i+2) which represents the
strength of the virtual constraint and the feedforward
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control inputū(2i+2) are given by







ū(2i+2)= ū(2i)−K(i)

(

Λūū(2i)+
1

ǫe(i)
R(y(2i+1)−y(2i))

)

kc(2i+2)=kc(2i) −Kρ(i)

(
γuρ

kc(2i)(t
1 − t0)

+
1

ǫe(i)

∫ t1

t0
yρ(2i+1) − yρ(2i) dt

)

,

(48)

where appropriate positive definite matrixK(i) and
positive constantKρ(i) represent learning and tuning
gains, respectively. Seti= i+1 and go to Step2i+1.

Here are all assumptions in the proposed framework and
how those are satisfied.

1) Conditions (3) and (4) in Lemma 1
If the inertia matrixM(q) of the robot does not depend
on the configuration coordinateq, then both conditions
are satisfied with the nonsingular block diagonal matrix
T = diag{Im,−Im}. Otherwise, however, if PD gains
KP andKD in the PD controller (26) are chosen large
enough, both conditions are satisfied approximately with
the same matrixT . For the proof, see [22].

2) Difference approximation of the variational system in
(13) (see also (31))
In order to let the approximation hold, we can make
the input variation arbitrarily small by choosing a suffi-
ciently small constantǫe > 0.

3) Restriction to a symmetric walking trajectory
In the beginning of learning, we make the constraint
parameterkc(0) sufficiently large.

5. NUMERICAL EXAMPLES

We apply the proposed algorithm in the previous section
to the compass gait biped with a torso depicted in Fig. 1 in
order to generate an optimal periodic gait. Here, we show the
results of two kinds of simulations. The physical parameters
of the robot in Table I are chosen asmT = 5.0,mL = 1.2
[kg] and a = b = 0.20, c = 0.12 [m], which are the same as
those of the robot named Skipper II in [13]. For the controller,
the following feedback gains are utilizedKP = diag(4, 4, 6)
and KD = diag(2, 2, 4). In all simulations, we assign a
reference velocity only toq̇1, since the angular velocity of
the ankle joint of the support leġq1 relates to leaning forward
of the body and mainly affects the walking velocity. This is
the reason why we do not assign the reference velocity to
the center of mass (CoM) of the robot, that its calculation
requires the precise knowledge of the robot model, e.g., the
inertia matrix. We utilize the following design parameterswith
respect to weighting functions for the cost function (39) as
Λy = diag(20, 20, 20), Λẏ = diag(10, 0, 0), γyρ = 1× 10−2,
Λū = diag(1×10−4, 5×10−5, 5×10−5) andγuρ

= 1×10−2,
those with respect to filter functions and penalty function as
∆t = 5.0 × 10−3[s], ∆t̄ = 0.1[s] andkFv

= 0.25 and those
with respect to learning algorithm asK(·) = diag(3, 3, 3),
Kρ(·) = 1 and ǫe(·) = 1. In each simulation, we proceed
500 steps of the learning procedure, which means the robot

continued 1000 cycles of walking, with the initial constraint
parameter:kc(0) = 30, with the initial condition:

(q1t0 , q
2
t0 , q

3
t0 , q̇

1
t0 , q̇

2
t0 , q̇

3
t0) = (−0.18, 0.20, 0, 1.1, 0.5, 0),

and with the initial control input:

(ū1(0)(t), ū
2
(0)(t), ū

3
(0)(t))

⊤ ≡ (0.5,−1.5, 0)⊤. (49)

In the first simulation, we assign a reference velocity in (40)
as vref = (0.5, 0, 0)⊤. Fig. 5 shows the history of the cost
function (39) along the walking steps. Since the cost function
monotonically decreases along the walking steps and then
converges to a constant value, it implies that at least a local
minimum of the cost function has been achieved smoothly.
Fig. 6 shows the history of the constraint parameterkc along
the walking steps. It implies that the strength of the virtual
constraint is adjusted. Althoughkc does not converge to zero,
it plays a role of a stabilizing feedback controller. Figs. 7
and 8 represent the animations of the robot in the first and
the last 5 cycles of walking, respectively. These figures show
that at the beginning the robot walks awkwardly, and then the
robot improves the walking gait as it continues to walk. Fig.
9 showsq̇1 of the generated gait, its referencev1ref = 0.5
and the filter functionν2(t) in (37), and Fig. 10 shows the
horizontal velocity of CoM of the generated gait. In the next
numerical example, we will observe that the horizontal CoM
velocity increases with the larger reference velocity. Fig. 11
exhibits the phase portraits ofq-q̇. The fact that a periodic
trajectory is generated follows from that the phase portraits
in the figure form closed orbits. Fig. 12 shows the generated
learning control input̄u, and Fig. 13 does the control input
u in Eq. (47). Finally, we quantitatively evaluate the energy
efficiency of the generated gait. Here, we calculate the specific
resistance (SR) [33], which is defined asSR = Ē/(MallgV̄ ),
whereĒ represents the average input power,Mall represents
the total mass and̄V represents the average walking speed. In
the case of the compass robot with a torso,Ē is obtained by
[34] (for the control inputu, see Eq. (26))

Ē =
1

t1 − t0

∫ t1

t0
|u1(t)q1(t)|+ |u2(t)q2(t)|+ |u3(t)q3(t)| dt.

From the above definition, we haveSR = 0.0480. It implies
that we can achieve almost equivalent efficiency to a human
walking according to [33]. Besides, we also investigate the
dimensionless index called the cost of transport (CT) [35],
which is calculated byCT = E/(Mall∆Xg). Here, the used

energyE is calculated byE =
∫ t1

t0
|u(t)⊤q(t)| dt, and∆Xg

represents the travel distance. We haveCT = 0.435.
In the second simulation, we assign another reference

velocity in (40) asvref = (0.8, 0, 0)⊤. The purpose of the
second example is to show that we can change the speed
of a generated gait by only changing the reference velocity
vref . Although we have observed that a various walking
trajectories can be generated by changing other parameters,
e.g., weight matrices of the cost function, we fix the other
parameters except forvref in order to make it clear whether
the reference velocity changes the speed of the generated
gait or not. Due to the limitation of space, we prioritize the
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Fig. 5. Histories of the cost function̂Γe along walking steps
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Fig. 6. Histories of the constraint parameterkc along walking steps
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Fig. 10. Horizontal velocity of the center of mass (CoM) of the generated
gait

comparison of gait speed with different reference velocities
over the other simulation results. Fig. 14 shows the historyof
the cost function (39) along the walking steps, and it implies
that at least a local minimum of the cost function has been
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Fig. 13. Generated all control inputsu

achieved smoothly as in the first simulation results. Fig. 15
shows the history of the constraint parameterkc along the
walking steps, and the strength of the virtual constraint is
adjusted. Figs. 16 and 17 represent the animations of the robot
in the first and the last 5 cycles of walking, respectively.
These figures show that an optimal gait can be eventually
generated as well as the first simulation. We also confirm
that the phase portraits corresponding to the generated gait
depicted in Fig. 18 form closed orbits, which implies that
the resultant gait is periodic one. Fig. 19 showsq̇1 of the
generated gait, its referencev1ref = 0.8 and the filter function
ν2(t), and Fig. 20 shows the horizontal velocity of CoM of
the generated gait. Since the assigned reference velocity here
is bigger than that in the first simulation, the velocity of CoM
of the generated gait is faster than that in the first one. From
these simulation results, the horizontal velocity of CoM has a
relation to q̇1, and the second term of the cost function (39)
with appropriately chosenve,ref encourages the robot to walk
forward with appropriate velocity.
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Fig. 15. Constraint parameterkc
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Fig. 19. q̇1, v1ref andν2 of the generated gait

6. DISCUSSION

6.1. Design parameters

In our framework, there are some design parameters:
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Fig. 20. Horizontal velocity of CoM of the generated gait

• learning algorithm parameters
K(·),Kρ(·) andǫe(·)

• weighting matrices and coefficients of the cost function
Λy, Λẏ, Λū, γuρ

andγyρ

First of all, each of them has to be positive definite matrix
or positive number. We should chooseǫe(·)’s small enough so
that the approximation in Eq. (31) holds. We let allǫe(·)’s be
a constant in both simulations.

The parametersK(·) andKρ(·) are the step parameters in
the steepest descent method. These parameters have an effect
on the convergence speed of the algorithm and have little
effect on the generated gait. They also compensate the increase
of the cost function due to the small variation of the initial
condition of each walking cycle, which will be mentioned in
subsection 6.3. Although, in general, the step parameters in
the steepest descent method are decided by the line search
method, we cannot use it, because the plant model is not
available. We let allK(·)’s andKρ(·)’s be constants in both
simulations, respectively. However, an appropriate convergent
sequence may be effective such that their elements are largein
the beginning of learning and they gradually become smaller.

While, weighting matrices and coefficients have an effect
on the generated gait. To prioritize making the configuration
coordinateq periodic, we choose the coefficients ofΛy larger
than the other weighting coefficients. The reason why the
coefficients ofΛū are chosen much smaller than the others
is that the cost with respect to the input is evaluated relatively
much bigger than those with respect to the output and its time
derivative constraints because of the filter functionν1.

SinceΛẏ has an effect on the velocity of the generated gait
and γuρ

and γyρ have an effect on the convergence speed
of the virtual constraint, we should set them according to
their priorities. Since we prioritize comparing the velocity with
different references, we letΛẏ bigger thanγuρ

andγyρ in the
simulations. Although we do not prioritize convergence ofkc
to 0 in those cases, we observe thatkc converges to 0 by
letting γuρ

andγyρ large in other simulations.

Let us note that since the proposed method is based on
the steepest descent method, achieving only a local minimum
is guaranteed. Hence, there is no guarantee that the resultant
trajectory corresponding to the local minimum is always
admissible walking pattern. Unless the resultant optimal trajec-
tory is admissible, the learning procedure has to be executed
again with different initial condition or design parameters.
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6.2. Computational cost

The proposed algorithm does not have time-consuming
calculations such as large-scale inverse matrices nor calcu-
lations of dynamics. Furthermore, it does not require enor-
mous amount of memory. Let us see Eqs. (46), (48) in the
proposed algorithm. First, the time-reversal operatorR(·) can
be calculated by just sorting an argument vector backwards.
In the (2i+1)th iteration, the calculation of the differential
operatorDt(·) can be obtained by a numerical differentiation
algorithm, and the adjoint calculation(δFv(ẏ(2i)−vref ))∗ is
easily obtained by Eq. (42). Since a single update of the
proposed learning requires only two experimental data, that
is, 2i th and (2i+1)th input/output data are required for the
i th iteration. Since the other previous data are not required,
enormous amount of memory is not necessary.

6.3. Consideration of the variation of the initial condition

Although the virtual constraint with sufficiently large con-
straint parameterkc makes the trajectory symmetric, the initial
conditions for each walking step may differ slightly. We can
evaluate how the mismatch error of the initial condition affects
the cost function, and can reflect the evaluation to choosing
the step parametersK(·) and Kρ(·) in order to compensate
the increase of the cost function. In order to deal with the
variation of the initial condition, we consider the plant system
asΣ : X × U → X × Y : (xt0 , u) 7→ (xt1 , y) :






ẋ = (J(x)−R(x))
∂H(x, u)

∂x

⊤

, x(t0) = xt0

y = −
∂H(x, u)

∂u

⊤

xt1 = x(t1)

.

We calculate the Fréchet derivative of the cost function con-
sidering the effects of the variations ofxt0 andxt1 as (see Eq.
(29) for comparison):

δΓ̂e(ue, ye, )(δxt0 , δue, δxt1 , δye)

= 〈∇ue
Γ̂e+πUe

◦(δΣe(xt0 , ue))
∗(∇x

t1
Γ̂e,∇ye Γ̂e), δue〉Ue

+〈∇x
t0
Γ̂e + πX ◦ (δΣe(xt0 , ue))

∗(∇x
t1
Γ̂e,∇ye Γ̂e), δxt0 〉X

= 〈∇ue
Γ̂e + πUe

◦ (δΣe(xt0 , ue))
∗(0,∇ye Γ̂e), δue〉Ue

+ 〈πX ◦ (δΣe(xt0 , ue))
∗(0,∇ye Γ̂e), δxt0 〉X ,

where π(·) represents the projection mapping onto(·) and
◦ denotes the composition. Since the cost function is not a
functional with respect toxt0 nor xt1 , ∇x

t0
Γ̂e=∇x

t1
Γ̂e=0.

Then the variation of the cost function with respect to that of
the initial conditionδxt0 is given by

〈πX ◦ (δΣe(xt0 , ue))
∗(0,∇ye Γ̂e), δxt0〉X . (50)

According to [26], [21], the variational symmetry gives the
following relationship around a symmetric trajectory (which
is an extension of Eq. (10), see also Remark 1):

(δΣe(xt0 , ue))
∗ = S−1 ◦ δΣe(xt0 , ue) ◦ S, (51)

where the operatorS : X × Ue → X × Ue is defined by

S(xt0 , ue) := (−(J −R)Txt0 ,R(ue)),

where note thatT is given in Remark 3 asT = diag(I,−I).
From Eq. (51), we have

πX ◦ (δΣe(xt0 , ue))
∗(0,∇ye Γ̂e)

= πX ◦ S−1 ◦ δΣe(xt0 , ue) ◦ S(0,∇ye Γ̂e)

= πX ◦ (−T−1(J −R)−1δxt1 ,R ◦ δΣ
x
t0

e (ue)(R(∇ye Γ̂e))

= −T−1(J −R)−1δxt1 .

From Eq. (50), the variation of the cost function with respect
to δxt0 is given by−T−1(J − R)−1δx⊤

t1
δxt0 . SinceJ and

R are given by the form of (27), and the dissipation matrix
KD in R is constant, we can evaluate an increase of the cost
function of the nextj + 1 th iteration due to the mismatch
error of thej th initial conditionxt0,j by only information of
δxt0,j := xt0,j − xt0,j−1 andδxt1,j := xt1,j − xt1,j−1.

Therefore, we can compensate this increase of the
cost function by choosing thej + 1 th learning gain
diag{K(j+1),Kρ(j+1)} so that‖ diag{K(j+1),Kρ(j+1)}‖ >
(xt1,j−xt1,j−1)

⊤(xt0,j−xt0,j−1)‖KD‖. Then it is guaranteed
that the cost function decreases even if the mismatch of the
initial conditions exists.

6.4. Future works

Uncertainties, for example measurement noise and pertur-
bations from environmental disturbances during learning,may
cause problems in practice. To solve these problems, we
consider the plant system with the above uncertainties as a
stochastic system and we focus on stochastic control theory
to take disturbances during experiments into account. In [36],
we have extended the deterministic Hamiltonian systems (1)
to stochastic Hamiltonian ones, whose dynamics are described
by stochastic differential equations. Furthermore, sincethe
variational symmetry of a deterministic Hamiltonian system
plays an important role in our learning method, we have inves-
tigated a corresponding symmetric property of the stochastic
Hamiltonian system in [37]. Now we are tackling extension
of the proposed learning framework to stochastic Hamiltonian
systems. The relation with other stochastic optimal control
methods, e.g., [17], [18] will be interesting.

Besides, application of this method to the robots with
multiple DoF is very important issue. For now, we consider
a 12-DoF 3D biped robot and just apply the ILC part of the
proposed method to the robot, that is, we repeat initializations
and experiments. We start learning from a pre-designed walk-
ing trajectory and try to improve the initial trajectory in order
to investigate applicability of the proposed framework. We
have already obtained some results of trajectory optimization,
and we expect that it is applicable to the complicated robots.
Experimental evaluation is also important. We have already
developed a 5-DoF planar biped robot as a testbed and are
preparing experiments.

Since the proposed method is classified as feedforward
control, an orbitally stabilizer, e.g., trajectory tracking control
should be applied to the generated gait after learning in order
to render the gait stable. We have already proposed stochastic
trajectory tracking control method in [38], which is applicable
even in the presence of noise and would be useful for the
purpose.



SUBMITTED TO ROBOTICA 14

Those works will be reported in future publications.

7. CONCLUSION

In this paper, we have proposed a repetitive control type
optimal gait generation framework by unifying learning con-
trol and parameter tuning. The proposed learning optimal
control method of Hamiltonian systems unifying ILC and
IFT plays an important role in our framework. It allows one
to simultaneously obtain an optimal feedforward input and
tuning parameter for a plant system, which is an optimal so-
lution to infinite-dimensional optimal control problem without
any finite-dimensional approximation. The symmetric property
of Hamiltonian systems allows one to directly provide the
gradient of the cost function without the precise knowledge
of the plan model. The feature of the proposed method is
that the robot keeps on walking and improves the walking
gait due to virtual constraints by a potential energy. That is,
this method does not need to repeat experiments under the
same initial condition, which is necessary for conventional
ILC frameworks. The proposed technique also differs from
some conventional methods using virtual constraints in that
it automatically mitigates the strength of the constraintsby
IFT according to the progress of learning by ILC. Finally,
numerical simulations demonstrate the effectiveness of the
proposed method.
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