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SUMMARY—This paper proposes a repetitive control type there is no systematic way to choose constraints achieving
optimal gait generation framework by executing learning caitrol 3 target motion, and such constraints often consume a lot
and parameter tuning. We propose a leaming optimal control o control energy. Gait generation methods based on central
method of Hamiltonian systems unifying iterative learning con- L .
trol (ILC) and iterative feedback tuning (IFT). It allows on e to pattern generator [14] or statistical Iearnlng. [15], [1B7] .
simultaneously obtain an optimal feedforward input and tuning  are also studied. The first method [14] considers a humanoid
parameter for a plant system, which minimize a given cost robot and constructs a good controller for it, where a leg
function. In the proposed method, a virtual constraint by a trajectory is first generated by a network of oscillators and
potential energy prevents a biped robot from falling. The stength e each joint trajectory is calculated via inverse kingesa
of the constraint is automatlca_lly mitigated by the IFT part of However, the number of necessary oscillators and how to
the proposed method, according to the progress of trajectgr ’ Lo o
learning by the ILC part. couple them are heuristic. The second method [15] optimizes
a nominal trajectory via differential dynamic programming
(DDP), which is a second order local trajectory optimizatio
method. Although the authors empirically show that the gen-
erated gait overcomes certain disturbances by combining DD

1. INTRODUCTION and a minimax criterion, a nominal trajectory is required an

Recently, control of walking robots has become an actiy@e state and the cost function are discretized. Since tse fir
research area. As the technology for walking robots evobes two methods are model-based learning, the plant models are
optimization problem of gaits with respect to energy congumnecessary. On the contrary, the Iattgr two m_ethods_ are model
tion becomes increasingly important. However, it is difica  fre€ and both are based on the policy gradient reinforcement
design a priori the optimal walking trajectory. Most of wialgg '€arning. The third method_[16] con5|ders_a sm_ple 3D biped
pattern generation and control methods have been based Pt and generates an optimal control policy which makes th
the zero moment point (ZMP) criterion [1], [2], [3], [4]. T robot ropust against _small slppg chqngmg. Howgver, itirequ
method can generate a stable walking pattern of a walkifformation of a nominal periodic trajectory and it cannairk
robot with multiple degrees of freedom (DoF), which mear}g'th_ high _d|me_n3|onal problems due to the so_—called curse
that the robot does not fall, and its implementation is feddy pf dlmenS|onaI|ty_. The _Iast method [17] generalizes théhpat
easy. However, the trajectory based on the ZMP is desigriBégral stochastic optimal control approach [18]. Altgau
heuristically in many cases and energy efficiency has nat beBiS approach generally requires the plant model, this ateth
considered sufficiently. Passive dynamic walker [5], [6]), [ Provides a special control structure for the rigid body dyites
[8] also attracts attention. This robot has a certain simpRs/Ch that a desired trajectory is parameterized as a paiidy a
structure and it walks down on a gentle slope with no actuatie control policy is optimized. However, this method regsi
but gravity. Walking control methods based on it have bedhe knowledge of the desired trajectory dynamics and it ig on
proposed by many researchers, e.g., [9], [10], [11]. Altou applicable to the special control_structure. _ _
the generated gaits are energy efficient, these methods ar@n the contrary, we have considered that physical propertie
only applicable to certain specially structured robots &0 fand learning contr_ol are useful tools to tackle this chajieg
Besides, walking control methods using virtual constsainProblem. So far, in [19], [20], [21], we have proposed an
based on the output zeroing control are proposed in uﬂptlmal gait generation method by modifying iterative m_ag
[13]. Since appropriately chosen holonomic constraintsice  €Ontrol (ILC) based on a symmetric property called variaio
the order of the system, these methods are applicable to #@metry of Hamiltonian systems [22]. Since this technique

robots with multiple DoF, under actuation and so on. Howevé$ @ motivation of the proposed method in this paper, whose
details are mentioned in the next paragraph, we first elé&ora

* Corresponding author. E-mail:s.satoh@ieee.org on it. Hamiltonian systems [23], [24] have been introduazd t
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represent physical systems and they explicitly possess gao [19], [20], [21] mentioned in the previous paragraph. The
properties for the control design such as passivity, symmetirtual potential energy is designed so that the motion of
and so on. We consider biped robots as Hamiltonian systeni® robot is restricted to a symmetric trajectory. It saves
rather than as just nonlinear systems, and take advantag®mé resetting the initial conditions. Third, by regardirg t
their physical properties. ILC based on variational symgnetpotential gain for the constraint as a tuning parameter, we
of Hamiltonian systems [22] allows one to solve a class of opxecute parameter tuning to mitigate the strength of thealir
timal control problems by iteration of laboratory experimtgee constraint automatically according to the progress ofrlieay
Thanks to the symmetric property, it does not require trmntrol. Consequently, it is expected to generate an optima
precise knowledge of the plant model and it can directly degéit without constraint eventually. In this method, ILC dRT
with infinite-dimensional optimal control problems withtou of Hamiltonian systems are utilized simultaneously. Hosvev
any finite-dimensional approximation. This is a big difiece since both methods influence each other, they regularlyatann
with the conventional ILC, e.g., [25] in that the conventibn be used simultaneously. In order to take interference df bot
ILC is only applicable to trajectory tracking control prebis. methods into account, we introduce an extended system which
However, although the ILC method in [22] works well foragain has variational symmetry. The extended system istea
some control problems, there are mainly two difficulties tof the original plant system enables one to apply ILC and IFT
apply it to the optimal gait generation problem. The firsdimultaneously. The proposed learning optimal contralved|
one is that this method deals with a functional of the inputne to simultaneously obtain an optimal feedforward input
and the output as a cost function, but it cannot take tlad tuning parameter for a plant system, which minimizes a
time derivative of the output into account. Since this signaost function. We summarize the advantages of the proposed
represents the generalized velocity of mechanical systemsethod compared with the other (particularly learning) met
its behavior severely affects the walking motion. The otheds:
difficulty is that it cannot take discontinuous state tréines
into account. Such transitions involved in general walking *
motions also have to be considered. In order to solve these
problems for the optimal gait generation, we have modified th
above ILC method in [19], [20], [21]. First, we proposed an
extension by employing a pseudo adjoint of the time derreati
operator. This method enables one to deal with a functiohal o
the time derivative of the output as a cost function. Second,*
we considered a state transition mapping of the collision to
be a general nonlinear function with respect to the state jus
before touchdown, and proposed an estimation method of the
mapping by the least-squares with stored experimental data
Since our previous method in [19], [20], [21] is classified This paper grew out of our previous reports [30], [31]. In
as ILC framework, it requires that we repeat laboratory expg30], the interference of ILC and IFT was not handled well,
iments under the same initial condition as well as many coand advanced considerations are added to [31]. The remainde
ventional results, e.g., [25], [22]. However, this initidtion of the paper is organized as follows. In section 2, ILC and
procedure is sometimes strict, because it is difficult tdizea IFT methods based on variational symmetry of Hamiltonian
the desired initial velocity of the mechanical systemstudatg systems [22], [26] are referred to. In section 3, we intraduc
walking robots. To solve the problem, this paper proposeaacompass-like biped robot with torso as a plant system. In
new repetitive control type optimal gait generation framekv section 4, we equip a constraint via a virtual potential gner
by executing ILC and a parameter tuning. Here, we refer &md propose a unified learning optimal control method of
iterative feedback tuning (IFT) based on variational syrmmne ILC and IFT. Then we summarize the proposed optimal gait
in [26] as the parameter tuning method of Hamiltonian sygeneration method. In section 5, some numerical simulgtion
tems. We newly propose a learning optimal control methatbmonstrate the effectiveness of the proposed method. In
of Hamiltonian systems by unifying ILC and IFT. While ILCsections 6 and 7, discussion and conclusions are given.
[25], [22] is to find an optimal feedforward input minimizing
a given cost function, IFT [27], [28], [26] is to find optimal
parameters of a given feedback controller. A conventional
repetitive control method [29] is also a kind of a learning2: VARIATIONAL SYMMETRY OF HAMILTONIAN SYSTEMS
method for a trajectory tracking control problem with time AND ITS APPLICATION TOILC AND IFT
periodic reference trajectories. Since an iteration piace
of the proposed framework is automatically executed andThis section considers a Hamiltonian system and its sym-
eventually an optimal periodic gait is expected to be gdrdra metric property called variational symmetry [22]. This p+o
it is classified as repetitive control rather than ILC. Thedaf erty relates the variational system of the Hamiltonian esyst
the proposed method is as follows. First, we add a constraamtd its adjoint one. Then, the ILC [22] and IFT [26] methods
by adding a virtual potential energy to prevent the robotfroutilizing this property are briefly referred to. These metho
falling. Second, we execute the modified learning procedysay important roles in the proposed framework.

it can generate an optimal trajectory as a solution to an
infinite-dimensional optimal control problem without any
discretization of the state space nor the time horizon nor
parameterization of the policy;

« since it can directly provide the gradient of the cost
function, we do not have to search the whole space;

it does not require time-consuming calculations, such as
large-scale inverse matrices and calculations of dynamics
nor an enormous amount of memory; and

it does not require the plant model nor any information
of nominal/desired trajectory.
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2.1. Hamiltonian systems and variational symmetry with the initial statez, (t°) = 0. Here, the controlled Hamil-
We consider a Hamiltonian system with dissipation [23f°Man v (z, u, v, u.) is given by
[24] 270 U Y :uwsy as 1 T o2H :
Hy(z,u, &y, uy) = = <xv) 7(3“;) (m“> .
OH (z,u) " 2 Oz, u)

ox

Uy Uy

& = (J(z)—R(x)) , 2(t°) = 20

Furthermore, a state-space realization of the adjointegyst
T @) with zero terminal state, denoted Iy = (637 (u))*(ua),
,M coincides with a time-reversal version of that of the véoiael

du system with zero initial state (5). This property is called
This system is one of the representations of the physiaariational symmetry of Hamiltonian systems.
systems and it includes not only the conventional Hamidioni Remark 1:In [22], the variational system with nonzero
systems but also passive electro-mechanical systemsameclinitial state and its adjoint are also considered.
ical systems with nonholonomic constraints and so on. HeRegarding variational symmetry, the following theorem is
z(t) € X, v € U andy € Y with Hilbert spaces X, U and useful.
Y describe the state, the input and the output, respectivelyTheorem 1 ([26]): Consider the Hamiltonian system (1)
Typically, X = R™ andU,Y = LJ'[t°,¢!] on a finite time and suppose that conditions of Lemma 1 are satisfied. Suppose
interval [t°, t1]. The structure matrix/(z) € R"*" and the moreover that, for two inputs,w € U, the corresponding
dissipation matrixR(z) € R™*™ are skew-symmetric and state trajectories(t),(t) € X,t € [t, ] satisfy

y:

symmetric positive semi-definite, respectively. The izl ) )
systemy X%« is the Fréchet derivative of the systémi:0 . The R O°H (x,u) _ O°H (x,u) 7 (6)
definition of the Fréchet derivative is given as follows. Oz, u)? (229 Oz, u)? (2=

Definition 1: Consider an operatgf : = — ¥ with Banach . 1
spacess and ¥, and an open subsé C =. f is said to be \é\':f?r:g de represents the time reversal operator [of ¢']
Fréchet differentiableat + € = if there exists an operator ! y
6f : Ex 2 — U such thatdf(x)(¢) is linear in¢ and the Ru)(t) = u(t' —t +1°), WVt e[t (7

following holds: For any € = such thatr + £ € =, o . o
Then variational symmetry leads to the following relatioips

where o(l€]12) The above operator maps frof§?[t, ¢1] to L7[t, ¢1].
H&l\\im T — = 0. Remark 2: A state trajectory under which the configuration
= =

| coordinateg and the phase coordinajesatisfy

Under these circumstance§f(z)(-) is called theFréchet o 0
derivativeof f at z. q(t) =gt —t+17)
The calculation of the Fréchet derivative is also utiliZed q(t) = —q(t' =t +1%),  vee [t )
derivation of the learning iteration law, e.g., Eqgs. (1B9X represents a time-symmetric motion with respect to the taidd
and (41). Here, let us refer to the following lemma. It retatepoint of timet = (t°+t1)/2. We call the trajectory satisfying
the variational system to its adjoint one, which appears {Re condition (9) symmetric trajectory. Suppose a stajedra
solving optimal control problems. tory ¢ corresponding an input is symmetric trajectory. Then

Lemma 1 ([22]): Consider the Hamiltonian systeBf° in  the condition (6) in Theorem1 is satisfied with = ¢ and

(1). Suppose thaf and iz are constant and that there exists §, — 4, and therefore the following simpler relationship than
nonsingular matrixl’ € R™*" satisfying Eq. (8) holds:

J=-TJT', R=TRT! ©) (652 ()" = R(5S) (0))R. (10)

0H(w,u) _ ( T Onn> O*H (x,u) <T_1 O'rm> .(4) From the relations (8) and (10), we convert the adjoint syste

O(z,u)? Onn  In ) 0(z,u)? \Onn I to the corresponding variational one, and calculate it by a
Here, I; and O;; represent; x ¢ identity matrix andi x j dr:ffert(ajr_]c_e apprOX|mat|0nb. ThEn,_thz |Sput—(|)utpu_t m?ﬁmg t
zero matrix, respectively. Then the variational systenvé#® the adjoint system can be obtained by only using the input-

is described by another linear Hamiltonian system — output data of the _original system, see Egs. (13) and (31).
'S y ystem This is a key technique of our learning framework based on

02%e0 v) - "
( (1)) () variational symmetry.
. 6H(Jc,u)T 0
= —_ Ry 9 = 2.0
t=(/-R) ox ’ o) = 2.2. ILC and IFT based on variational symmetry
. OH,(z,u, w0, uy) " 5 We review some results of ILC in [22] and IFT in [26]. They
iy=(J —R) (5) o
ox, have a common feature that they take advantage of varidtiona
OH(, u, Ty, up) | symmetry of Hamiltonian systems. The objective of ILC is to
Yo=— Oty find an optimal feedforward input which minimizes a given
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cost function, while that of IFT is to find optimal parameterfor the virtual inputu,,, let us consider the following input-

of a given feedback controller. output mapy, = 2, (u,,):
First, let us refer to ILC. Consider the systéific : U — YV T
in (1) and a cost functiof’(u, y) : U x Y — R. By utilizing i =(J—R) OHe(z,u, up) . 2(t%) = 20
the relationy = ¥*+ (u), the cost function can be written by 83% . (15)
D(u): U — R :=I'(u, 2% (u)). Let us calculate the Fréchet _ OHc(z,u,uy)
derivative (Definition 1) of the cost function in order to alst Y= Ou,

the gradient with respect to the inputas follows: Since this mapz,**"" is a Hamiltonian system of the form

ST (u) (0u) = (VuL(u,y), ou)r + (V,T(u,y), 6y)y (1), Lemma 1 and Theorem 1 imply that it has variational
_ - 2.0 . - symmetry with some conditions. Here, the following propert
= (Vul'(w, y)+ (03" (W) (Vyl'(w9)), 0u)v- iy respect toh defined in Eq. (14) is exhibited, which is

=: VI'(u) utilized in the IFT algorithm.

(11) Lemma 2 ([26]): b* is characterized by the following equa-

. . __tion for any¢ € L3[t0, t1]:
The well-known Riesz representation theorem and the lityear

of the Fréchet derivative guarantee that there exist fanst . a

V.uI'(u,y) andV,T'(u,y) as above. Sinc&T (u) in Eq.(11) b (&) = /to (t)dt. (16)

represents the gradient of the cost function with respect utilizing the input-output map (15) and Eq. (16), an

u, the steepest descent method implies that_qne can redyieion algorithm for IFT can be derived in the manner

the C(.)St functl_on down _at least .tg a Ioga! minimum by th?lmilar to the case of ILC. Roughly speaking, consider the

following iteration law with a positive definite matrik(;: system (15) and a cost functid?]o(up,yp) . L5 x L — R.
w(ig1) = ugi) — Ko VI (ug)- (12) By replacingu, y, £ andI in Eq. (11) withu,, y,, 5"

andI',, we havedl',(u,)(du,) = (VI ,(u,), du,). From the

Here, the subscrift) denotes theé th iteration in a laboratory linearity of the Fréchet derivative and the operajpthat is,

experiment. However, calculation of the gradi&fif(u) gen-

erally requires the precise knowledge of the plant systém, 3h(p) dp = b(p +dp) = b(p) + o([| dpl])

because it contains the output signal of the adjoint system = h(dp) + o(]| dp||)

(0X7 (u))* corresponding to the input sign&,I'(u,y). If and from Definition 1. we have

the assumption in Theorem 1 holds, the following approxima- ’

tion is obtained from Eq. (8) with a sufficiently small consta du, = dh(p)dp = h(dp). a7)

e >0:

Then,oT',(u,)(du,) reduces to
(670 (u))*(V, D (u, ) = ROOZVE) (w))(R(V, L (u, y))) (VT,(u,), 6u,) = (h*(VT,(u,)), dp) (18)

N S (w4 eR(V, T (u, y))) — S¥E) (w) (13) Sinceh*(VT,(u,)) in Eq.(18) represents the gradient of the
€ ' cost function with respect to the tuning parameterthe
The approximation (13) enables one to execute the iteratityration law for IFT is given by with a positive definite miatr
procedure with Eq. (12) by only using the input-output dath »(;) (for calculation ofh*, see Eq. (16)):
of the plant systenx.*«. £
Second, let us refer to IFT. Here, we consider a feedback  p11) = p) — Kp(i)/ VT, (upiy (1)) dt. (29)
system of a Hamiltonian system with a generalized canoni- #0
cal transformation [32] so that the feedback system is also

described by another Hamiltonian system in the form of (1). id full d ol like bioed
Therefore, the system parameters of the closed loop systertret us consider a full-actuated planar compass-like bipe

H.,, J. and R. generally depend on the parameters of tHe ot with a torso de_p_icted in Fig. 1. The legs without knees
feedback controller to be adjusted. For simplicity, in thaper, @nd the torso are rigid bars, and they are connected by a

it is supposed that only the Hamiltonian functiéh depends fEctionlgs(js Singe at t?}e hipk. A#-pferiod ?f W?Iking gesaéb d
on the tuning parameter € R*. The case wherd, and R, the period between the take-off of one foot from the groun

also depend o is considered in [26]. Consider a feedbacf&md its subsequent landing. Table | shows physical parasete

system of the form (1) with a Hamiltonia#,.(, u, p). In and variables. In this paper, we define the inplas

the IFT method proposed in [26], the tuning parameter is = (u17u27u3)T = (vl — 3, =02, 02 +U3)T (20)

considered to be a virtual input for the Hamiltonian system, o ) o )

and a corresponding output is induced so that the inputuut? Order to simplify the input-output relation in the Hamil-

map has variational symmetry. Let us introduce the follow@nian form mentioned later. Furthermore, We assume the

ing zeroth-order hold operatdy, which maps the parameteri©/lowing on this robot. _ _

p € R® tou, € L3[°, 1] in order to define a virtual input: Assumptlon_ 1:There exists a foot link whose thickness and
mass can be ignored, and the ankle torgiean be occurred

b RS — L[t ¢ u,(t) := (h(p))(t) = p,Vt € [t°,¢']. (14) relative to it.

3. DESCRIPTION OF THE PLANT
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TABLE I
Yo g SOME NOTATIONS
af
X Notation Meaning
¢ q:=(¢" %7 Angles of legs and a torso
v? G:=(¢',4%,¢>)7 Angular velocities of legs and a torso
. v’ p = (p,p%,p°)" Generalized momentum
B o z:=(q",p")" State
Q:=(q",¢"HT Angles and their velocities
vl (g,0,p:0) := (q(t°), p(t°)) Initial state
0 X (gp1,pp1) := (q(t'), p(t1)) Terminal state
()=/+ Just before/after a discontinuous transition
Fig. 1. Model of the compass gait biped with a torso Note thatz_ = z,:.

TABLE |

PARAMETERS AND VARIABLES . . . . 5
and the following inertia matrix and the potential energy:

Notation Meaning Unit

mr Torso mass kg M(q) =

mr Leg mass kg mpl? + mpi? + mpa?  —mpblcos(qt —q?) mrclcos(qt —q3)

a Length fromm, to the ground m —mpbl cos(q! —q?) my, b2 0

b Length from the hip tanp, m mrel cos(qt —g?) 0 mpc

l=a+b Total leg length m

c Length from the hip tonp m

g Gravity acceleration m/s2 Ulq) =

qt Stance leg angle w.r.t vertical rad {mpr((a+1)cos gt —bcos q2)+mT(l cos ¢' +ccos q3)}g.

q> Swing leg angle w.r.t vertical rad

qi’l’ Torso angle w.r.t vertical rad  The outputy corresponding to the input defined in Eq. (20)
v, __Ankle torque . Nm js given byy = ¢. At the end of a walking period, a collision
v Torque relatively applied from torso to swing leg Nm . .

03 Torque relatively applied from torso to stance leg nm Detween a leg and the ground causes a discontinuous change

in angular velocities. Assumptions 2 and 3 imply that there
exists no double support phase. Since the support and swing

legs change each other instantly, we have
Assumption 2:The foot of the swing leg does not bounce

back nor slip on the ground at the collision (inelastic inge (1) (1) 8 q_ = Cq_, (23)
impact is assumed). 0 0 1

Assumption 3:Transfer of support between the stance anghere,_ andq, denote the angles just before and just after
the swing legs is instantaneous. _ the collision, respectively (see, Table I1). Following tag of
Assumption 4:The foot-scuffing during the single supporonservation of the angular momentum, a transition mapping

phase can be ignored. can be written ag, = I1(¢_)¢_. The detail of the mapping
We use number of notations with respect to the state. Tablefjl,_) is omitted here. See, e.g., [12].
summarizes them. Before the ILC method mentioned in Subsection 2.2 is

A typical mechanical system can be described by a Hamipplied, feedback controllers are typically employed te th
tonian system in (1) with the state=(¢,p")" € R*™ as control system in order to render the system asymptotically

. stable. However, the feedback system is not generally Hamil
OH(q,p,u)

g Omr I O Oy e tonian system of the form (1) any more with arbitrary feedbac
(p) = ((—Im Omm) - (Omm Rp )) OH (apw) T controller. In [32], a generalized canonical transformafi
7R which is a pair of feedback and coordinate transformations
aH(q,p,u)T preserving the Hamiltonian structure in (1), is proposeds |
y= T ou q (21)  known that in the case of a typical mechanical system in @1),
simple PD feedback preserves the structure of the Haméltoni
with the Hamiltonian system [32], [22]. Let us consider a PD controller
Hg,p,w) = 2p" M(g) 'p+Ulg) —u'q.  (22) u=—Kpq=KpG+1, (24)

2 . .
wherew is a new input for ILC andKp, Kp € R™*™ are

Here, a positive definite matriz/(¢) € R™*™ denotes the symmetric positive definite matrices.

inertia matrix. The generalized momentyme R™ is given Remark 3 ([22]): Consider the feedback system of the form
by p := M (q)q. A positive semi-definite matriRp, € R™*™ (21) by a PD controller (24). If the inertia matrik/(q) of
denotes the friction coefficients, and a scalar funclitla) € the system does not depend on the configuration coordinate
R denotes the potential energy of the system. The dynamicsgofthen the conditions (3) and (4) in Lemma 1 are satisfied
the robot depicted in Fig.1 is described as a typical mecianiwith the following nonsingular block diagonal matrik =
system in (21) withm = 3, the friction coefficient®tp = Oss  diag{[l,,,, — I, }. Otherwise, however, if PD gaifs p and K
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in (24) are chosen large enough, the conditions (3) and &) ar kA
satisfied approximately with the same matfix
In what follows, we consider the feedback system by a PD

controller (24) with sufficiently large gain&» and Kp so Kp ]
that the conditions in Lemma 1 are satisfied approximately, q
and derive the iteration law for the inpatin Eq. (24). u xS 3
+ + 5
4. MAIN RESULTS q
This section proposes a repetitive control type optimal Kp [+—

gait generation framework. In subsection 4.1, we introduce
a constraint by adding a virtual potential energy in ordetg. 2. Closed loop system of the local PD feedback and theatipotential
to prevent the robot from falling and to continue learning"®
procedures. Then, the concept of the proposed framework is

outlined. In subsection 4.2, we propose a leaming Optim@le qynamics of the robot into another Hamiltonian system
control method of Hamiltonian systems by unifying ILC anq)f the form (21) with a new Hamiltoniai/, a new structure
IFT mentioned in subsection 2.2. Since both the ILC and IF],5¢rix J and a new dissipation matrik as

methods influence each other, they regularly cannot be used
simultaneously. The proposed method takes the interferend! (¢, p, @, k)
of both methods into account. In subsection 4.3, we define a 1+ 1 1+ T
. o . ' ==-p M — K Alg —
cost function and exhibit a proposed algorithm. 2P (9)""p+Ula) + 24 (Kp 4 keAc)g =g,

z_ (O I 5 Os3  Os:

J = (ii, ogg)’ R= (oii KSDS) (27)
] i _ By regardingk. as a tuning parameter, we execute IFT men-
In the literatures [12], [13], walking control methods Win tioneq in subsection 2.2 to adjust the constraint strerayid,

virtual constraints based on the output zeroing control &g, generate a walking trajectory by applying ILC simultane-

proposed. In [13], particularly, they can achieve stablmsy ogly. The concept of the proposed framework is summarized
metric walking gaits by using another property of Hamilemi 55 follows.

systems other than those used in this paper. They set thetoutp
functiony = ¢! + ¢ to zero by the output zeroing control and
keep the leg angles bounded by a leg exchange scheme [13].
As a consequence, they guarantee that the robot does not fall
and obtain symmetric walking gaits satisfyin§+ ¢> = 0.

On the contrary, we use a similar idea of the virtual
constraint to prevent the robot from falling, but do not use
the output zeroing control. There are two reasons: one is tha
the output zeroing control requires the precise knowledge o
the plant system and the other is that such constraints omsu
a lot of control energy. We add a virtual potential energy
such as Eq. (25) to produce a similar effect to [13]

4.1. Constraints by virtual potential energies

Step 1 : Add a virtual potential energy to restrict the motion
of the robot to a symmetric trajectory. Then, let the
constraint parametek,. sufficiently large to expect
that the robot does not fall.

tep 2 : By utilizing a unified learning optimal control
method proposed in the next subsection, ILC gen-
erates an optimal walking gait and, simultaneously,
IFT mitigates the constraint parameter automatically
according to the progress of learning control.

Step 3 : Repeat Step 2 every one cycle of walking.

As a result, it is expected that an optimal gait without

the constraint or with sufficiently small one is generated

P, = E(q1 +g?)2. (25) eventually. The feature Qf the prpposed framework is th_at
2 the robot keeps on walking and improves the walking gait,

Here, the gain parametér represents the constraint strengthbecause the robot does not fall due to Stepl. From this gspect

We let k. sufficiently large at the beginning of the learningour method is classified as repetitive control [29] rathemth

steps so that the trajectory of the robot is restricted tollC [25], [22]. It also differs from the conventional methed

symmetric one, i.e.g* + ¢> = 0 holds. Due to [13], it is using virtual constraints in that it automatically optimézthe
expected that the robot does not fall. The advantages of thigength of the constraints.

method instead of the output zeroing control are as follows.

First, it does not require the model parameters of the plapp. Unified learning method of ILC and IFT

system, since the potential energy (25) can be generated by Blere, we propose a learning optimal control method of

simple feedback controller Hamiltonian systems by unifying ILC [22] and IFT [26] by

11 0 introducing an extended system which again has variational
u=—Kpq— Kpq+1u—kcAcq, Ac:= <1 1 0)- (26) symmetry. This method enables one to execute ILC and IFT

000 simultaneously, and plays an important role in our proposed

The feedback system is depicted in Fig. 2. Second, aftengddframework mentioned in the previous subsection.

the potential energy, the plant system preserves the HamilLet us define the extended input by u. := (a",u/))" €

tonian structure and the constraint paraméteis explicity U. = U x U, the extended outpuf. by y. := (yT,yf:r)T €

contained in a new Hamiltonian. The controller (26) corsert, =Y x Y,, whereU,,Y, = Lj[t°,¢!] and HamiltonianH,
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by He(z,u.) := H.(z,u,u,). Then we have the following | ¥t°(3i+3) = Tt°(3:) .
_ 0 . _ _ i~
extended systerg, = X. (Ue) U(3i43) = U(3i) *K(i) (VaFe(3i)+;R(y(3,-+2) *y(3i+1)))
, OH,(z,ue) " 0 ¢ .
P=(=-R 9 2(t%) = 20 (28) P@i+3) = P(3i) —Kp(i) /tU Vu,Lesi)
_ ,MT | + 1 (Yo(zise) — Yoezisn) dt
Ye = aue cels) Yp(3i+2) Yp(3i+1) )

Since the extended system (28) has the form of (1), it canovided that the initial control input,, = 0 or an appro-
be easily proven that this system has variational symmepsiate initial input, the initial parametes,, and the initial
with certain conditions. Then we consider a cost functiotonditionz.y are appropriately chosen, respectively. Here,

Te(ue,ye) : Ue x Yo — R. The Fréchet derivative of the coste.(.) denotes a sufficiently small positive constant and an

function can be calculated as appropriate positive definite matricé§., and K ., represent
) gains, respectively. Here, the conditign ,o;) andw;, are
O e (e, Ye ) (Otie, 0Ye) chosen such that it satisfies the condition (6) in Theorenth wi

= (V. Lo (e, ye), Sue)u, + (Vy. Do e, ve), ye)y. the trajectory governed by the pair ofo(s;) andus;) with
_ . P YT P S 29 p3i)- A (_:onc_:rete algorithm gxh|b|t|ng hovy to selegt o(;)

(Vi Le + (0% (ue))" (Vy.Le), Sucyu,,  (29) andwy; is given for mechanical systems in [26], [21].

We supplement the derivation of the control law (32). The
triple iteration laws imply that this learning procedureede
three experiments to execute a single update in (12). Hirst,
(3i+1)th iteration generates a trajectory corresponding to

St St ¢ = w(3; such that the condition (6) in Theorem 1 holds.
due = < ) = <b(dp))' (30) second, in the @2)th iteration, we calculate the output
SV (we + €. R(V,, %)) in Eq. (31) (note that in this case

Whel’evuefe(ue,ye) and Vygf‘e(ue,ye) represent the partial
gradients of the cost function with respect t9 and .,
respectively. It follows from the definition af. and Eq. (17)

ou,

From Eq. (30), Equation (29) reduces to corresponds ta:(3;1)). It follows from w. = (w',h(p) ") "
X andv, I'. = (v, 1], v, T))T that
0l (ue, ye ) (dte, 0ye) .
- +e.R(VyTe)
i . 20 . i we—i—eeRV,?Fe:( w v ) 33
= {1 ) (u Pt (622 () (9,10 ) (5 VoL = o) + R, 1) )
0 40/ / v xwe
v i 0 . . Note thati(s; o) andu,s;2) follows from Eq. (33). Then
= <<h*(Vu t )) + <0 b*> R(0%e™ (we))R(Vy. Te) the input and the output signals 6%.*° (u.)*(V,.I.) can
Up™ € be calculated from the last approximation in Eg. (31). With
ou this information, the gradient of the cost function withpest
"\dr) / yuge to the input VI (u.) with Te(ue) = Te(ue, Xe(ue))(seC
. also Eq. (11)) is obtained. Finally, the input for the«3)th
~ << Val'e ) <R 0) « (31) lteration is given by Eq. (12) with these signals. That i th
b*(Vy,Te) 0 b (3i+3)th iteration law comes from the following calculation:
B¢ (weteR(Vy,I'e)) ~ S8 (we) <5u) (6u<3i+3>) — (u@m) - u(sa)
€e o)) dpita) P(;(i+3) *5(31')
T T =—("® Ve (te(34))
where,o andw, := (w',h(p)"')" should be chosen such 0 K,
that the condition (6) in Theorem 1 holds. In the last approx- K. 0 Valus;
imation, the relatiorh*R = h*R* = (Rh)* = b* is utilized ~ - ( é’) Ko ) {(f)*(Vu elf ’?_ ))
(note that it follows from Eq. (7) thaR* = R). Consequently, oé) up™ e(34)
the optimal learning control law unifying ILC and IFT is give + 1 <R 0*> < Y@Bi+2) — Y@i+1) )} )
by ee \0 b Yp(3i+2) — Yp(3i+1)

1) = e Remark 4:If the learning procedure is executed around
Tio3i+1) T Vo) a symmetric trajectory and a trajectory in each experiment
U(3i+1) = W(i) approximately satisfies the condition (9), then one caiizetil
P(3i+1) = P(30) the following procedure instead of that in (32):

T10(2i4+1) = Tt0(24)
T40(3i4+2) = Yo (a) ) U(2i41) = U(2i) T+ €e(i)) R(VyLe(2:))
Uzit2) = W) + € R(Vylei) (32) Up(2ir1) = D(P2iy) + €e(iy R(Vy,Le(2iy)

Up(siv2) = b(p@aiy) + €e(i)R(Vypf‘e(3i)) (34)
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T10(244+2) = Tt0(2i) ql
B B . ql, *
“(2i+2):u(2i)_K(i) (qu (y(2i+1)_y(2i))) { )
t’s  Support,” ' Swing  t*
tt v !
P2i+2) = P2i) — K p(s) < o Vi, Ue(2i)
1
+ (Yp(2i+1) = Yp(2i)) dt | . N
€e(i) P'\ \
Around a symmetric trajectory, the condition (9) is sati$fie ——
with ¢ = ¢ andw = v due to Remark 2. Herej represents @ ‘ﬂfl
the statex and v represents the learning inpat So, the tﬁ Swine— ¢ Support ¢

procedure corresponding to the{3)th iteration in (32) is not
necessary. The learning law (34) follows from that th&-@3th
and the (2+2)th procedures correspond to the+3)th and the
(3i+3)th procedures in (32), respectively.

Remark 5: Although the proposed algorithm requires time-

varying feedback gains during the learning procedure fapresents a constant reference angular velogity) € R

generating perturbation signals (segs;2) in the iteration and,,(t) € R denote filter functions defined respectively by
procedure (32) ot 2,41 in another procedure (34)) in order

to approximate output signals of the variational systemty u 1 (1 —Cos (%ﬂ)) (t°<t<t"+At)

Fig. 3. lllustration of the restraint condition of the coshttion

lizing Eq. (31), eventually, a generated optimal feedbaaik g 1 t): 0 N (36)
is constant. Unless time-varying feedback gains are diaila 0 (" +At<t<t’)
we substitute a feedforward input with the previous outpit(t) := (37)
signal. For example, the following procedure is substiifte 0 (t'<t< # — A7)
the original one in (32) oo
L 1—cos (;777?)) 140 —At<t< 1_t0
T10(3i42) = Yro(s) 2 ( at (5 =) 7
U(si+2) = W(i) +€e(s) (R(Vyfem)HR(Vpre(zi))y(Bi)) : 1 <1—cos <7’ = tvr)) (52 <t <252 4 AT)
P(3i+2) = P(3i)
0 (L Af<t<t!)

where design parametefs and At denote positive constants.

4.3. Optimal gait generation algorithm i )
Fig. 4 illustratesv; (t) and v»(t). For any¢ € R", a penalty

Let us consider the following cost function:

T(y, 9, @, yp, up) = Vi V2
1 t! T [ 1F------~ ———m———— =
3 W) =CR(y)(7)) (1) Ay (y(7) = CR(y)(7)) d7 :
1t
#3 PO v ARG L =
t’ t+At t' t =t t
+ = 1 /t TA u dT + Ty /t y2 (T) dr Fig. 4. Filter functionsv; andvs
t0 2 t0 P
function F, : R™ — R" is defined as
Tup ) e
+ 7/ uz(7)dr, (35) _ kr,(¢H)? if ¢ <0
£ [FL,(Q)] = L (i=1,2,---,1), (38)
0 otherwise

where appropriate positive definite matricag, Ay, Az €

R3*3 represent weight matrices and appropriate positive comhere an appropriate positive constagpt represents strength
stants+,, and v,, represent weighting coefficients, respecef the penalty. In what follows, the dimensierof the penalty
tively. The first term of the cost function (35) is also equedp function shall accordingly change with that of the argument
in [19], [30], which is a necessary condition for a periodi¢in the case of Eq. (35); = 3). The second term encourages
trajectory such thag! (t°) = ¢%(t') and¢?(t°) = ¢! (¢!). Fig. the robot to achieve an appropriate constant velocity in the
3 illustrates the condition. Let us note that although aeothmiddle of walking. As a consequence, it is aimed at spedaifyin
necessary condition with respectgaan be utilized as in [19], the walking direction (forward or backward) and a rough
where initial angular velocities are equivalent to veliesit walking speed, and preventing the robot from stopping durin
just after touch down. However, it is not equipped here fahe learning. The third and fourth terms are to minimize
simplicity of iteration law. In the second termy,..; € R® the control input and the feedback input generating virtual
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potential energy, respectively. The last term is to mitgdite are calculated from Eq. (41) as

strength of the virtual constraint.

In order to utilize variational symmetry of the extended(

system for (27), let us rewrite the cost function (35) as

L(y, 9,1, Yp, up) =

3, ()= CRw) T Ay (7)) =CeR() (7)) dr

0

2

0

1t L
g [ T A dr = Eole ),
t

where

C, = diag{C,0} € R | v, ,ep := (vref,0)" € RY,
Ay, (1) := diag{r1(t)Ay, vy, }, Ay () := diag{ra(t)Ay, 0},
Ay, = diag{Ag, v, } € R¥? (40)

and, in this case, the dimension Bf is r = 4.
Since the virtual constraint introduced in Subsection 4.1
restricts the motion of the robot to a symmetric trajectdtry,

is supposed that the learning procedure is executed around a

symmetric trajectory. Now let us derive the concrete updnati
law based on the optimal learning control procedure (34) in
Remark 4.

Let us calculate the Fréchet derivative of the cost fumctio
(39) as follows:

0L e (Ye, Yo, te) (e, e, ute)

= <Aye (ye - CeR(ye)v 0Ye— CeR((Sye» v+ <Aye F, (fl)e — ’lJe7l,~ef)
OFy (e —Ve,ref )P (0ye))y, + (Au, e, OUe) v,

(ld=RCe)Ay, (id—CeR)(Ye) =Dt (6 Fo (Y —ve,res )" Ay,
X Fy(fe—e,ref)) , 0Ye) v, + (Au, te, Oe)u,

=1 (Vy.Te, 0ye)y. + (V. Te, Sue)u,

_ vyfe 5y Vﬂfe 5
i) Gal), (i) (o), e

Here, D; denotes the time derivative operator. Since the cost
function (39) is a functional of the time derivative of thetput

U, the previously proposed technique with a pseudo adjoint of
D, in [19] is utilized in the calculation. Briefly puD; = —D;
holds under certain conditions. See [19], [21], for the ilieta
From Eq. (38),(0F,(Je —ve,ref))* can be calculated as

[(5Fv (ye_’l)e,ref))*]; =
0 (i #J)
{ ZkFu (yiivé,ref) if yéivé,ref <0
0 otherwise
(i, =1,2,3,4). (42)

Then, The partial gradien® I, V, I'.,V I and vV, I

_ id—RC 0 VlAy 021 id-—CR 0

vypre B 0 ld 012 ’)/yp 0 ld

) -D <<(6Fu(y_v7'ef))* 0 >
Yp ' 0 (5F'v(yp_0))*
val\y 021) (FU(Q—Uref))>
O12 0 Fv(yp_o)
+ l/ Fv (ye(T)*Ue,ref)TAye (T)Fv (ye(T)*Ue,ref) dT = ((id - ,ch)l/lAy(id - CR_Q(?J) - Dt(((SFu(f‘)_Uref))*VQ
t X A?)Fv(yfvref))v 7ypyp) (43)

(39) and

Val Aqt
u Ae — u . 44
<Vupre) <,yupu’f’> ( )

From the iteration law (34) and Egs. (43) and (44), let us
summarize the proposed learning algorithm.

Step0 :Set appropriate positive definite matricds, Ay

and Ay as weight matrices, positive constantg,
andv,, as weight coefficients and positive constants
At, At and kr, as design parameters for the filter
functionsy; in (36) andw, in (37) and the penalty
function F, in (38). Set the initial control input
u oy appropriately (or setiy) = 0) and a constant
reference angular velocity,..; and let the constraint
parametet:. ) sufficiently large. Let the robot start
walking under an appropriate initial conditiarjo.
Seti = 0. Then go to Step 1.

Step2i+1: During the (2+1)th walking cycle, one utilizes

the following controller
u=—Kpq— Kp{ — up2it1)Acq + U2i41). (45)

Here, the time-varying feedback gain for the virtual
constraintu,»;,1y and the feedforward control input
U(2i41) are given by

{ U(2i4+1) = U(2i) + Ee(i)R(Vyf‘e(Qi)) (46)

Up(2i+1) = Up(ai) + €c(i R(Vy, Te(ai)

wheree. ;) denotes a sufficiently small positive con-
stant and

vyf‘e(2i) = (id_RC)VlAy(id_CR)(?J(%))
— Di((0F, (Y(2i) = Vref)) Valhy Fo (§(2i) = Vref)),
Vi, Le2i) = Yo, Yp(20)-

For (0F,)*, see Eq. (42). Then go to Step+2.

Step2i+2: During the (2+2)th walking cycle, one utilizes

the following controller
u=—Kpq— Kpq— ke@iyo)Acq + U2it2)- (47)

Here, the feedback gak) (»;42) Which represents the
strength of the virtual constraint and the feedforward
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control inputi(z;42) are given by continued 1000 cycles of walking, with the initial constrai
parameterk,y = 30, with the initial condition:

_ _ _ 1
U(2i42) = U(2s) — K i) (Auu(Qi) +—€e(i) R(y2it1) _y(Qi))) (G, %, @, Gfo, 4, G0) = (—0.18,0.20,0,1.1,0.5,0),
ke(2ira) =ke2i) — K p(a) (Y, Fe2iy ' — 1°) and with the initial control input:

/ g (k) (1), @ (1), Ty (1)) = (0.5,-1.5,0)T.  (49)

+ , Yei+1) = Yp(2i) dt |,
¢

€e(i . . . . o
<@ In the first simulation, we assign a reference velocity in) (40

(48) aswv.e; = (0.5,0,0)". Fig. 5 shows the history of the cost
where appropriate positive definite matr;, and function (39) along the walking steps. Since the cost fumcti
positive constanfs ;) represent learning and tuningmonotonically decreases along the walking steps and then
gains, respectively. Sét=i+1 and go to Ste@i+1. converges to a constant value, it implies that at least a loca

Here are all assumptions in the proposed framework afnimum of the cost function has been achieved smoothly.
how those are satisfied. Fig. 6 shows the history of the constraint paramétealong
" . the walking steps. It implies that the strength of the virtua
1) Conditions (3) and (4) in Lemma 1 g P P 9

- . constraint is adjusted. Althougl). does not converge to zero,
If the |nert|a_ matn_xM(q) of_the robot does ot d_e_pendit plays a role of a stabilizing feedback controller. Figs. 7
on the _co_nflgu_ratlon coord_lnatp then bOth conditions and 8 represent the animations of the robot in the first and
are sa'tlsﬂed with the nonsmgular black dla}gonal m.atr%e last 5 cycles of walking, respectively. These figuresasho
T’ = diag{l;n, —In}. Otherwise, however, if PD gains . . ihe beginning the robot walks awkwardly, and then the
Kp andKp in the PD controller (26) are chosen largg,,, , improves the walking gait as it continues to walk. Fig.
enough, both conditions are satisfied approxmatelyw@ showsg! of the generated gait, its referenogf — 05

5 tg%same matrid. _Fort_the pfrot(r)]f, see [f_Z]. | ¢ .and the filter functiorv,(¢) in (37), and Fig. 10 shows the
) Difference approximation of the variational system "Worizontal velocity of CoM of the generated gait. In the next

(13) (see also (31)) numerical example, we will observe that the horizontal CoM

In order to let the approximation hold, we can rnakgelocity increases with the larger reference velocity.. Hif

the input variation arbitrarily small by choosing a Suﬁ"exhibits the phase portraits @f§. The fact that a periodic
ciently small constant¢. > 0.

- . . . trajectory is generated follows from that the phase pdsrai

3) Restrlcnon.to a symmetrlq walking trajectory .in the figure form closed orbits. Fig. 12 shows the generated

In the beginning qf.learnmg, we make the COnStraIrPéarning control inputz, and Fig. 13 does the control input
parametets. (o) sufficiently large. u in Eq. (47). Finally, we quantitatively evaluate the energy
efficiency of the generated gait. Here, we calculate theiipec
5. NUMERICAL EXAMPLES resistance (SR) [33], which is defined 8& = E/(M,ugV),
here £ represents the average input powef,;; represents
e total mass antl’ represents the average walking speed. In
e case of the compass robot with a torBobis obtained by
4] (for the control inputu, see Eq. (26))

We apply the proposed algorithm in the previous sectio\ﬁ
to the compass gait biped with a torso depicted in Fig. 1
order to generate an optimal periodic gait. Here, we show t
results of two kinds of simulations. The physical paransete
of the robot in Table | are chosen asr = 5.0,m;, = 1.2 1 t!
[kg]l and @ = b = 0.20, ¢ = 0.12 [m], which are the same as® = W/
those of the robot named Skipper Il in [13]. For the contmlle o o
the following feedback gains are utilizedp = diag(4, 4, 6) From the above _defmmon, we hq\f;éR = 0.(_)4_80. It implies
and Kp = diag(2,2,4). In all simulations, we assign athat we can achieve almost equivalent efficiency to a human
reference velocity only taj!, since the angular velocity of Walking according to [33]. Besides, we also investigate the
the ankle joint of the support leg} relates to leaning forward dimensionless index called the cost of transport (CT) [35],
of the body and mainly affects the walking velocity. This igvhich is calculated by’T = E/(M.AX,). Here, the used
the reason why we do not assign the reference velocity éaergyE is calculated byE = ftto lu(t) Tq(t)| dt, and AX,
the center of mass (CoM) of the robot, that its calculatiorepresents the travel distance. We h&Ve = 0.435.
requires the precise knowledge of the robot model, e.g., theln the second simulation, we assign another reference
inertia matrix. We utilize the following design parametesith  velocity in (40) asv,.; = (0.8,0,0)". The purpose of the
respect to weighting functions for the cost function (39) asecond example is to show that we can change the speed
A, = diag(20, 20, 20), A, = diag(10,0,0), v,, = 1 x 1072, of a generated gait by only changing the reference velocity
Ay = diag(1x107*,5x107°,5x107%) and~y,, = 1x1072, wv,.. Although we have observed that a various walking
those with respect to filter functions and penalty functien drajectories can be generated by changing other parameters
At = 5.0 x 1073[s], At = 0.1[s] andkr, = 0.25 and those e.g., weight matrices of the cost function, we fix the other
with respect to learning algorithm a&".) = diag(3,3,3), parameters except far..; in order to make it clear whether
K, = 1 ande, ) = 1. In each simulation, we proceedthe reference velocity changes the speed of the generated
500 steps of the learning procedure, which means the rolgatit or not. Due to the limitation of space, we prioritize the

g [u! (t)g' ()] + [u?(t)g® ()] + |u® (H)g* (t)] dt.
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achieved smoothly as in the first simulation results. Fig. 15
shows the history of the constraint parametgralong the
walking steps, and the strength of the virtual constraint is
adjusted. Figs. 16 and 17 represent the animations of tta rob
in the first and the last 5 cycles of walking, respectively.
These figures show that an optimal gait can be eventually
generated as well as the first simulation. We also confirm
that the phase portraits corresponding to the generated gai
depicted in Fig. 18 form closed orbits, which implies that
the resultant gait is periodic one. Fig. 19 show's of the
generated gait, its referenog, , = 0.8 and the filter function

, and Fig. 20 shows the horizontal velocity of CoM of
the generated gait. Since the assigned reference velazigy h
is bigger than that in the first simulation, the velocity ofNCo

of the generated gait is faster than that in the first one. From

comparison of gait speed with different reference velesiti these simulation results, the horizontal velocity of CoM laa
over the other simulation results. Fig. 14 shows the histdry relation tog!, and the second term of the cost function (39)
the cost function (39) along the walking steps, and it ingplievith appropriately chosen, .y encourages the robot to walk
that at least a local minimum of the cost function has bedarward with appropriate velocity.
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6. DIsCUssION
6.1. Design parameters

In our framework, there are some design parameters:
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Fig. 20. Horizontal velocity of CoM of the generated gait

« learning algorithm parameters
K(), Kp) andee(,)

« Weighting matrices and coefficients of the cost function
Ay, Ayy Mg, vu, andqyy,

First of all, each of them has to be positive definite matrix
or positive number. We should choosg.)’s small enough so
that the approximation in Eq. (31) holds. We let all.y’s be

a constant in both simulations.

The parameterd(.) and K., are the step parameters in
the steepest descent method. These parameters have dn effec
on the convergence speed of the algorithm and have little
effect on the generated gait. They also compensate theasere
of the cost function due to the small variation of the initial
condition of each walking cycle, which will be mentioned in
subsection 6.3. Although, in general, the step parameters i
the steepest descent method are decided by the line search
method, we cannot use it, because the plant model is not
available. We let allK(.y's and K,.y’s be constants in both
simulations, respectively. However, an appropriate coyesmt
sequence may be effective such that their elements areifarge
the beginning of learning and they gradually become smaller

While, weighting matrices and coefficients have an effect
on the generated gait. To prioritize making the configuratio
coordinateg periodic, we choose the coefficients &f larger
than the other weighting coefficients. The reason why the
coefficients of A; are chosen much smaller than the others
is that the cost with respect to the input is evaluated radbti
much bigger than those with respect to the output and its time
derivative constraints because of the filter functign

SinceA, has an effect on the velocity of the generated gait
and v,, and v, have an effect on the convergence speed
of the virtual constraint, we should set them according to
their priorities. Since we prioritize comparing the vetgavith
different references, we let; bigger thany,,, and~,, in the
simulations. Although we do not prioritize convergence:pf
to 0 in those cases, we observe tlatconverges to 0 by
letting v, and~y,, large in other simulations.

Let us note that since the proposed method is based on
the steepest descent method, achieving only a local minimum
is guaranteed. Hence, there is no guarantee that the msulta
trajectory corresponding to the local minimum is always
admissible walking pattern. Unless the resultant optimagét-
tory is admissible, the learning procedure has to be exdcute
again with different initial condition or design parameter
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6.2. Computational cost where note thaf is given in Remark 3 a§" = diag(, —1I).

The proposed algorithm does not have time-consumifigom EQ. (51), we have
calculations such as large-scale inverse matrices nou-alc,,, o (65 (z0,ue))*(0,V,,.T0)
lations of dynamics. Furthermore, it does not require enor- _1 .
mous amount of memory. Let us see Egs. (46), (48) in the "X °S 0 02 (@40, tte) © §(0, V. Ie) )
proposed algorithm. First, the time-reversal oper®¢f) can = mx o (-1~ '(J — R) "6z, R 0 65" (ue)(R(Vy,I'e))
be calculated by just sorting an argument vector backwards- T YJ = R) 'ozy.

In the (2+1)th iteration, the calculation of the differential - . .
operatorD, (-) can be obtained by a numerical differentiatiof "™ Ed- (50), the variation of th?1CO§rt function with respec
algorithm, and the adjoint calculatiod F, (j ;) — vres))* is  © oz IS given by —T~(J — R)™'bx, 6z. SinceJ and
easily obtained by Eq. (42). Since a single update of tH& a'€ given by the form of (27), and the dissipation matrix
proposed learning requires only two experimental datat, tth In Ris constant{ we can_evall_Jate an increase pf the cost
is, 2i th and (2+1)th input/output data are required for théunCtlon of Fhe _m_a)_(tj +1 th iteration due t(_) the m|_smatch

i th iteration. Since the other previous data are not requirdd™®" Of the; th initial conditionzz,o ; by only information of

enormous amount of memory is not necessary. 0 j 1= Tp0, 5 — To jo1 ANAOTy 5 1= T — Ty i
Therefore, we can compensate this increase of the

cost function by choosing thef + 1 th learning gain

. o . diag{K(j+1), Ky(j+1)} s that|| diag{K 1), Kpij+1) | >
Although the virtual constraint with sufficiently large con (xtl,j7;“7],)_1)4((%0),],ﬂEtOJ_l)”KDH. T(her? itis (gua)ranteed
straint parametef. makes the trajectory symmetric, the initiakpat the cost function decreases even if the mismatch of the
conditions for each walking step may differ slightly. We cakhitial conditions exists.

evaluate how the mismatch error of the initial conditioreats

the cost function, and can reflect the evaluation to choosigy. Future works

the step parameterk.y and K, in order to compensate - .
. 4 . Uncertainties, for example measurement noise and pertur-
the increase of the cost function. In order to deal with the

L . . ions from environmental disturban ring learni
variation of the initial condition, we consider the planssm ations from e onme ta} disturbances during learninay
cause problems in practice. To solve these problems, we
asY: X xU = X xY : (xp,u) = (z4a,y) :

consider the plant system with the above uncertainties as a
OH (z,u) ' stochastic system and we focus on stochastic control theory

6.3. Consideration of the variation of the initial conditio

& = (J(z)~R(z)) Oz , 2(l7) = g0 to take disturbances during experiments into account. &, [3
aH(:c,u)T ) we have extended the deterministic Hamiltonian systems (1)
=T ou to stochastic Hamiltonian ones, whose dynamics are destrib

by stochastic differential equations. Furthermore, sittoe
variational symmetry of a deterministic Hamiltonian syste
We calculate the Fréchet derivative of the cost fUnCtion'COp|ays an important role in our |earning method, we have inves
sidering the effects of the variations @f andx,: as (see Eq. tigated a corresponding symmetric property of the stoghast
(29) for comparison): Hamiltonian system in [37]. Now we are tackling extension
51%8(“87%’ V(6240 Stte, 5241, Oye) of the proposed Iea_rning _framework to stochastic _Hamit:tnni

. . N N systems. The relation with other stochastic optimal cdntro
= (VaLetmu, 0(0%e(wi0, ue))" (Va, Le, Vi Le), duc)u. methods, e.g., [17], [18] will be interesting.
(Ve Le +mx 0 (68 (240, 1)) (Ve e, Vy Te),d20)x  Besides, application of this method to the robots with

— (v, I, 55 (0, “(0,%, 1".), 6 multiple DoF is very important issue. For now, we consider
(VuLe+mu. o (*xto ue))A( wL'e),te)u, a 12-DoF 3D biped robot and just apply the ILC part of the
+ (mx 0 (6% (x40, ue))™ (0, Vy,I'e), dx40) x, proposed method to the robot, that is, we repeat initiatinat

where 7, represents the projection mapping ortp and and experiments. We start learning from a pre-designed-walk
o denotes the composition. Since the cost function is notig trajectory and try to improve the initial trajectory imder
functional with respect ta;o nor z,:, thoerthlerO- to investigate applicability of the proposed framework. We
Then the variation of the cost function with respect to that dave already obtained some results of trajectory optiricizat

the initial conditiondz;o is given by and we expect that it is applicable to the complicated rabots
. . Experimental evaluation is also important. We have already
(mx 0 (08e (40, ue)) (0, Vy, I'e), 0p0) x- (50) developed a 5-DoF planar biped robot as a testbed and are

According to [26], [21], the variational symmetry gives thdreparing experiments.
following relationship around a symmetric trajectory (ani ~ Since the proposed method is classified as feedforward
is an extension of Eq. (10), see also Remark 1): control, an orbitally stabilizer, e.g., trajectory traogicontrol
. . should be applied to the generated gait after learning ierord
(0%c(w0,ue))” = 87 008 (240,ue) © S, (51) {0 render the gait stable. We have already proposed stachast

where the operata : X x U, — X x U, is defined by trajectory tracking control method in [38], which is apjgliie

even in the presence of noise and would be useful for the
'S(xt“aue> = (*(J - R)Ta:to,R(ue)), purpose.
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Those works will be reported in future publications. [11]

7. CONCLUSION 12

In this paper, we have proposed a repetitive control type
optimal gait generation framework by unifying learning eon[1 !
trol and parameter tuning. The proposed learning optima?
control method of Hamiltonian systems unifying ILC andt4]
IFT plays an important role in our framework. It allows one
to simultaneously obtain an optimal feedforward input and
tuning parameter for a plant system, which is an optimal sps]
lution to infinite-dimensional optimal control problem ¥witut
any finite-dimensional approximation. The symmetric proype [16
of Hamiltonian systems allows one to directly provide the
gradient of the cost function without the precise knowledgie
of the plan model. The feature of the proposed method i
that the robot keeps on walking and improves the walking
gait due to virtual constraints by a potential energy. Tlsat i[18]
this method does not need to repeat experiments under the
same initial condition, which is necessary for conventiona
ILC frameworks. The proposed technique also differs frof]
some conventional methods using virtual constraints i tha
it automatically mitigates the strength of the constraioys |2
IFT according to the progress of learning by ILC. Finally,
numerical simulations demonstrate the effectiveness ef tBl]
proposed method.
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