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Abstract

This paper is concerned with repetitive control of Hamiltonian systems, which
is based on iterative learning control utilizing the variational symmetry of
those systems. Variational symmetry allows us to obtain an algorithm to
solve a certain class of optimal control problems in a repetitive control frame-
work. Therefore, the proposed method can deal with not only trajectory
tracking control problems but also optimal trajectory generation problems,
never before considered in a repetitive control framework. A convergence
analysis of this algorithm is also discussed. Furthermore, some numerical
simulations demonstrate the effectiveness of the proposed method.
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1. Introduction

The proportional-derivative (PD)-type iterative learning control (ILC)
method proposed in [1] is an algorithm to generate a feedforward input
achieving a trajectory tracking control (on a finite time interval) without
using precise information of the plant system 1 . Since this algorithm does
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not require a precise model of the plant, it is robust against modeling er-
rors. Many researchers have worked on this topic; see, e.g., [3, 4]. So far,
however, the main objective of the method is basically trajectory tracking
control problems. Recently, we have proposed a novel ILC method based on
the variational symmetry of Hamiltonian systems [5, 6, 7]. In these results, it
is proved that the variational systems of Hamiltonian systems are symmetric
and this property can be utilized for executing the iterative algorithm for op-
timal control problems without using precise information of the plant. This
method can generate an optimal trajectory without any desired trajectory
or finite-dimensional approximation, as a solution of an infinite-dimensional
optimal control problem, or, more concretely, an optimal control problem on
L2 signal space.

On the other hand, repetitive control (RC) is also a useful tool which has
a close relationship to ILC; see, e.g., [8, 9]. RC is also a kind of a learning
method for a trajectory tracking control problem with time-periodic reference
trajectories.The main differences between RC and ILC are those between the
reference trajectories and the initializations: RC deals with a time-periodic
reference trajectory (with the infinite length) and ILC does this on a finite
time interval, and it requires the initialization of the state at the start of
each period. However, the optimal trajectory generation problem has never
been considered in a repetitive control framework.

This paper focuses on repetitive control of Hamiltonian systems and pro-
poses a new RC framework based on variational symmetry. Although this
approach has a defect that the reference (or desired) trajectories have to be
time symmetric with respect to the period, it also has many advantages. Not
only can it track a reference trajectory, but also it can repetitively generate
an optimal trajectory as a solution to an optimal control problem without
any reference trajectory. This method is applicable to a class of nonlinear
systems which includes fully actuated mechanical systems and, furthermore,
it does not require the plant model. We also provide a convergence analysis
which guarantees the convergence of the output trajectory on the reference or
optimal one under certain conditions. Furthermore, numerical simulations of
a robot manipulator demonstrate the effectiveness of the proposed method.

2. Iterative learning optimal control of Hamiltonian systems based
on variational symmetry

This section briefly refers to some preliminary background.
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2.1. Variational symmetry

The plant system considered here is a Hamiltonian system with dissipa-
tion Σ with a controlled Hamiltonian H(x, u) as (x1, y) = Σ(x0, u) :















ẋ = (J − R)
∂H(x, u)

∂x

T

, x(t0) = x0

y = −
∂H(x, u)

∂u

T

, x1 = x(t1)

. (1)

Here x(t) ∈ R
n and u(t), y(t) ∈ R

m describe the state, the input and the
output, respectively. The structure matrix J ∈ R

n×n and the dissipation
matrix R ∈ R

n×n are skew symmetric and symmetric positive semi-definite,
respectively. The matrix R represents dissipative elements such as friction of
mechanical systems and resistance of electric circuits. We suppose that the
Hamiltonian H(x, u) is a sufficiently differentiable function. For this system,
the following theorem holds.

Theorem 1. [5] Consider the Hamiltonian system Σ in (1). Suppose that
J and R are constant and that there exists a nonsingular matrix T ∈ R

n×n

satisfying

J = −TJ T−1, R = TR T−1 (2)

∂2H(x, u)

∂(x, u)2
=

(

T 0
0 I

)

∂2H(x, u)

∂(x, u)2

(

T−1 0
0 I

)

. (3)

Then the Fréchet derivative of Σ is described by another linear Hamiltonian
system (x1

v, yv) = dΣ((x0, u), (x0
v, uv)) :



































ẋ = (J − R)
∂H(x, u)

∂x

T

, x(t0) = x0

ẋv = (J − R)
∂Hv(x, u, xv, uv)

∂xv

T

, xv(t
0) = x0

v

yv = −
∂Hv(x, u, xv, uv)

∂uv

T

, x1
v = xv(t

1)

with a controlled Hamiltonian Hv(x, u, xv, uv) as

Hv(x, u, xv, uv) =
1

2

(

xv

uv

)T
∂2H(x, u)

∂(x, u)2

(

xv

uv

)

.
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Furthermore, the adjoint of the variational system with zero initial state ua 7→
ya = (dΣx0

(u))∗(ua) is given by



































ẋ = (J − R)
∂H(x, u)

∂x

T

˙̄xv = −(J − R)
∂Hv(x, u, x̄v, ua)

∂x̄v

T

ya = −
∂Hv(x, u, x̄v, ua)

∂ua

T

(4)

with the initial state x(t0) = x0 and the terminal state x̄v(t
1) = 0. Suppose

moreover that J − R is nonsingular. Then the adjoint (x1
a, ua) 7→ (x0

a, ya) =
(dΣ(x0, u))∗(x1

a, ua) is given by the same state-space realization (4) with the
initial state x(t0) = x0, the terminal state x̄v(t

1) = −(J − R)T x1
a, and

x0
a = −T−1(J − R)−1x̄v(t

0).

This theorem reveals that the variational system and its adjoint of a Hamilto-
nian system in the form of (1) have almost the same state-space realizations.
This means that the input-output mapping of the adjoint can be produced
by the input-output data of the original Hamiltonian system as

R ◦ (dΣx0

(u))∗ ◦ R(v) = dΣx̄0

(ū)(v) ≈
1

ǫ

(

Σx̄0

(ū + ǫv) − Σx̄0

(ū)
)

(5)

provided that appropriate boundary conditions and sufficiently small positive
ǫ are selected, where R is the time reversal operator defined by

R(u)(t − t0) = u(t1 − t), ∀t ∈ [t0, t1]. (6)

This property is utilized for solving optimal control problems in which the
adjoint operator plays an important role.

Remark 1. It is noted that if the system is a gradient system [10] which
is a nonlinear generalization of a linear symmetric system, that is, J = 0,
then the assumption (3) in Theorem 1 is automatically satisfied with T = I.
On the other hand, if the system is conservative, that is, R = 0 then it is
self-adjoint in the usual sense [5].
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2.2. Optimal control via iterative learning

Let us consider the system Σ : X ×U → X ×Y in (1) and a cost function
Γ : X2 × U × Y → R with Hilbert spaces X, U and Y . Typically, X = R

n,
U = Lm

2 [t0, t1], and Y = Lm
2 [t0, t1]. The objective is to find the optimal input

(x0
⋆, u⋆) minimizing the cost function Γ(x0, u, x1, y). In general, however, it is

difficult to obtain a global minimum since the cost function Γ is not convex.
Hence we try to obtain a local minimum here. We can calculate

d
(

Γ((x0, u), Σ(x0, u))
)

(dx0, du)

= dΓ((x0, u),Σ(x0, u))
(

(dx0, du), dΣ(x0, u)(dx0, du)
)

= 〈Γ′((x0, u), Σ(x0, u)),

(

idX×U

dΣ(x0, u)

)

(dx0, du)〉X2×U×Y

= 〈
(

idX×U ,(dΣ(x0, u))∗
)

Γ′(x0, u, x1, y), (dx0, du)〉X×U ,

where idX×U represents the identity map. The well-known Riesz’s represen-
tation theorem guarantees that there exists a function Γ′(x0, u, x1, y) as above.
Therefore, if the adjoint (dΣ(x0, u))∗ is available, we can reduce the cost
function Γ at least to a local minimum by an iteration law with a K(i) > 0

u(i+1) = u(i)− K(i)πU ◦
(

idX×U , (dΣ(x0
(i), u(i)))

∗
)

Γ′(x0
(i), u(i), x

1
(i), y(i)), (7)

where π(·) denotes the projection operator onto (·).
The results in the previous subsection enable one to execute this proce-

dure without using the parameters of the plant Σ by the relation (5), pro-
vided that Σ is a Hamiltonian system and that the boundary conditions are
selected appropriately. In [5, 6, 7], this framework is effectively utilized for
ILC (of trajectory tracking) for a ‘round trip’-type trajectory. A more precise
discussion for optimal control will be presented in the following sections.

3. Main results

In this section, we propose a new algorithm solving a class of repetitive
control problems based on the variational symmetry of Hamiltonian systems.

3.1. Repetitive control

A typical repetitive control problem is to achieve trajectory tracking con-
trol for a periodic reference trajectory by learning (experiments) without
using precise information of the plant [8]. A conventional ILC problem is
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also to achieve trajectory tracking control by learning but the reference tra-
jectory is defined on a finite time interval, that is, tracking is achieved by
several experiments with a finite time interval (with the same initial states)
[1].

The approach taken here is to provide a repetitive control framework using
the ILC based on variational symmetry. Variational symmetry allows us to
obtain an algorithm to solve a certain class of optimal control problems in a
repetitive control framework. Here, we adopt the following strategy: suppose
that the plant Hamiltonian system is controlled by a feedback designed by
generalized canonical transformations [11] so that the closed-loop system is
again described by a Hamiltonian system (1). See Section 4 for a concrete
example of constructing such a control system and refer to [5] for the details.
We make the following assumption on a desired reference trajectory or a
desired optimal trajectory.

Assumption 1. The desired reference trajectory or the desired optimal tra-
jectory is L-periodic and time symmetric2, and it contains a stationary point
at the origin.

Then apply the ILC for the first period L from the stationary point and
then wait for the state to converge on the stationary point. When the state
approaches sufficiently close to the stationary point, the next ILC procedure
with time period L starts. Continue in the same manner. A more detailed
procedure is explained below. (See Table 1 and Fig. 1 as well.)

Step 0 : Suppose that the initial state x(0) is a stationary state. Set t0(1) :=

0 and i = 1 and then go to Step 1(a).

Step i (a) : Set tL(i) := t0(i) + L and apply ILC input u(i) derived in Section

2 for the time t ∈ [t0(i), t
L
(i)].

Then, set u(t) ≡ 0 for t ≥ tL(i) and find the smallest τ ≥ tL(i) satisfying

‖x(τ)‖ < b (8)

2 Since ILC based on variational symmetry needs experiments with time-reversal tra-
jectories with respect to the trajectory to be learned, the reference or desired trajectory
has to be time symmetric in the repetitive control framework.
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with a prescribed constant b > 0; u(t) ≡ 0 is applied for t ∈ [tL(i), τ ].

Define t0(i+1) := τ and

∆t(i) := τ − tL(i). (9)

If i = 1 or the cost function decreases, then go to Step i + 1(a).

Otherwise, that is, if

d
(

Γ((x0, u), Σ(x0, u))
)

(10)

≈ Γ((x0, u), Σ(x0, u))
∣

∣

x0 = x0
(i)

u = u(i)

− Γ((x0, u), Σ(x0, u))
∣

∣

x0 = x0
(i−1)

u = u(i−1)

≥ 0,

set istp = i, and stop updating the control input. Then go to Step
i + 1(b).

Step i (b) : Set tL(i) := t0(i) + L and apply the last updated control input

u(istp) for the time t ∈ [t0(i), t
L
(i)].

Then, set u(t) ≡ 0 for t ∈ [tL(i), τ ]. Define ∆t(i) := τ−tL(i) and t0(i+1) := τ .

Then go to Step i + 1(b).

Since the ILC mentioned in Section 2 is based on the steepest descent method,
Eq. (10) implies that a local minimum can be obtained. By this algorithm,

Table 1: Parameters and variables

Notation Meaning
L period of the (reference / optimal) trajectory
t0(i) starting time of the i-th period

tL(i) terminal time of the i-th period (tL(i) = t0(i) + L)

y(i) output of the i-th period (y(i) = y(t), t ∈ [t0(i), t
L
(i)])

x0
(i) initial state of the i-th period

xL
(i) terminal state of the i-th period

b error bound parameter (defined in (8))
∆t(i) excess converging time (defined in (9))

an error bound parameter b with an excess converging time ∆t(i) is intro-
duced, so the initial state of ILC in each period is sufficiently close to the
stationary point x(0). However, if ∆t(i) converges on 0 as i grows, then we
obtain the desired periodic trajectory asymptotically. The following section
discusses the behavior of the excess converging time ∆t(i).
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Figure 1: Typical time response of the proposed repetitive control procedure

3.2. Convergence analysis

In the procedure proposed in the previous section, we have introduced
an error bound parameter b in (8) and, consequently, we need to employ the
corresponding excess converging time ∆t(i), which is 0 in the conventional
repetitive control. This section discusses when the converging time ∆t(i)
becomes (converges on) 0.

The plant system considered here is a Hamiltonian system (1) with the
following additional assumptions. Here, we use notation below to describe
the plant system (1) for simplicity:

ẋ = f(x, u). (11)

Assumption 2. A system of the form (1) has an equilibrium point at the
origin; that is, f(0, 0) = 0 holds for any t ≥ 0. Suppose also that the system
is input-to-state stable.

In what follows, we suppose that each control input u for system (1) is
generated by the iteration law (7); that is, we only consider the learning
control input as u. We assume the following.

Assumption 3. Under an appropriately chosen learning gain K(i) in the
iteration law (7), there exists a positive constant k1 such that

sup
i

t0≤t≤t0+L

‖u(i)(t)‖ ≤ k1
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Due to our strategy mentioned in the previous subsection and Assumptions
2 and 3, for any x(t0) satisfying ‖x(t0)‖ < b with the error bound parameter
b in (8) and any t0 ≥ 0, there exists a positive constant k2(b) such that

‖x(t0 + L)‖ ≤ ω(‖x(t0)‖, L) + γ



 sup
i

t0≤t≤t0+L

‖u(i)(t)‖





< ω(b, L) + γ(k1) =: k2(b),

where ω and γ represent class KL and class K functions [12], respectively.
We utilize the notation Br as an open ball with radius r whose center is at
the origin.

Assumption 4. The origin of the system with u ≡ 0, that is, f(0, 0) is
locally exponentially stable for all x(t0) ∈ Bk2(b).

For a feedback control design for a Hamiltonian system, a generalized canon-
ical transformation is proposed in [11]. It is a pair of feedback and coordinate
transformations preserving the Hamiltonian structure in (1).

Assumption 5. For any t ∈ [t0, t0 + L] and any bounded input u, there
exists a positive constant k3(u), and f(x, u) in (1) satisfies the following
inequality for any xn(t0), xm(t0) ∈ Bb:

‖f(xn(t), u(t)) − f(xm(t), u(t))‖ ≤ k3(u)‖xn(t) − xm(t)‖.

Assumption 6. The Jacobian matrix ∂f(0,0)
∂x

is bounded on Bk2(b).

Remark 2. From Assumptions 2, 4, 5 and 6, the origin of the following
variational system

ẋv =
∂f(x, 0)

∂x
xv (12)

along any trajectory x of system (1) with u ≡ 0 starting from x(t0) ∈ Bk2(b)

is locally exponentially stable.

Since we prove a convergence theorem of the proposed method by utilizing
the contraction mapping theorem [12], we introduce the following mappings
(Fig. 1 may help in understanding them).
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Definition 1. A mapping g1 is defined as g1 : x0
(i) 7→ xL

(i), which maps from
the initial state for the i-th iteration to the terminal one after time period L
along (1).

Definition 2. A mapping g2 is defined as g2 : xL
(i) 7→ x0

(i+1), which maps
from the terminal state for the i-th iteration to the initial one for the i+1-
th iteration after the excess converging time ∆t(i) in (9) with u(t) = 0 for
∀t ∈ [tL(i), t

L
(i) + ∆t(i)].

We give the following lemma, which will be utilized to prove our convergence
theorem.

Lemma 2. Suppose that we use the same control input u for each iteration
interval t ∈ [t0(i), t

L
(i)]. Then there exists a positive constant bmax such that, if

the error bound parameter b in (8) satisfies b ≤ bmax, then the mapping

g2 ◦ g1 : x0
(i) 7→ x0

(i+1) (13)

is a contraction mapping.

Proof. Let ξ, η be two state trajectories of system (11) starting from ξ(t0) =
ξ0 ∈ Bb and η(t0) = η0 ∈ Bb, respectively. From Assumption 5, for ∀t ∈
[t0, t0 + L], we have

‖ξ(t) − η(t)‖ ≤ ‖ξ0 − η0‖ +

∫ t

t0
‖f(ξ(τ), u(τ)) − f(η(τ), u(τ))‖ dτ

≤ ‖ξ0 − η0‖ +

∫ t

t0
k3(u)‖ξ(τ) − η(τ)‖ dτ.

The Gronwall-Bellman lemma [12] yields

‖ξ(t) − η(t)‖ ≤ ‖ξ0 − η0‖ +

∫ t

t0
‖ξ0 − η0‖k3(u) exp

[

∫ t

s

k3(u) dτ
]

ds

≤ ‖ξ0 − η0‖ exp
[

∫ t

t0
k3(u) dτ

]

. (14)

By considering the time interval for the i-th iteration t0(i) ≤ t ≤ t0(i) + L,

inequality (14) implies that

‖ξL
(i) − ηL

(i)‖ ≤ ‖ξ0
(i) − η0

(i)‖ exp
[

∫ t0+L

t0
k3(u) dτ

]

. (15)
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From Definition 2, we can write

‖ξ0
(i+1) − η0

(i+1)‖ = ‖g2(ξ
L
(i)) − g2(η

L
(i))‖. (16)

Next, we define the following term:

G(ηL
(i), v(i)) := g2(η

L
(i) + v(i)) − g2(η

L
(i)), (17)

where v(i) := ξL
(i) − ηL

(i). From definition (17), G(ηL
(i), 0) = 0. Then, by

applying the Morse lemma [13] to Eq.(17), we obtain

G(ηL
(i), v(i)) =

(

∫ 1

0

∂G(ηL
(i), w)

∂w

∣

∣

∣

w=λv(i)

dλ
)

v(i) =: Φ(ηL
(i), v(i))v(i). (18)

Equations (17) and (18) lead to g2(ξ
L
(i)) − g2(η

L
(i)) = Φ(ηL

(i), v(i))(ξ
L
(i) − ηL

(i)),
and we can calculate that

‖g2(ξ
L
(i)) − g2(η

L
(i))‖ ≤

∥

∥

∥
Φ(ηL

(i), v(i))
∥

∥

∥
‖ξL

(i) − ηL
(i)‖

≤ ‖ξL
(i) − ηL

(i)‖

∫ 1

0

∥

∥

∥

∂G(ηL
(i), w)

∂w

∣

∣

∣

w=λv(i)

∥

∥

∥
dλ

≤ ‖ξL
(i) − ηL

(i)‖ sup
0≤λ≤1

∥

∥

∥

∂(g2(η
L
(i) + w) − g2(η

L
(i)))

∂w

∣

∣

∣

w=λv(i)

∥

∥

∥

= ‖ξL
(i) − ηL

(i)‖ sup
0≤λ≤1

∥

∥

∥

∂g2(η
L
(i) + w)

∂w

∣

∣

∣

w=λv(i)

∥

∥

∥

≤ ‖ξL
(i) − ηL

(i)‖ sup
η∈Bk2(b)

∥

∥

∥

∂g2(η)

∂η

∥

∥

∥
. (19)

Here we consider the variational system of (12) along a trajectory η start-
ing from ∀ηL ∈ Bk2(b) with u ≡ 0. From Remark 2, for each η, there exist
positive constants α(η), β(η), and c(η) satisfying

‖xv(t
0 + ∆t(b))‖ ≤ β(η)‖xv(t

0)‖e−α(η)∆t(b), for ∀xv(t
0) ∈ Bc(η). (20)

Note that we describe the excess converging time as ∆t(b) in (20) in order to
clarify that it depends on the error bound parameter b. By using inequality
(20) and from Definition 2, the following equation holds:

sup
η∈Bk2(b)

∥

∥

∥

∂g2(η)

∂η

∥

∥

∥
= sup

η∈Bk2(b)

xv(t0)∈Bc(η)

‖xv(t
0 + ∆t(b))‖

‖xv(t0)‖
≤ β̄(b)e−ᾱ(b)∆t(b), (21)
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where ᾱ(b) := supη∈Bk2(b)
α(η) and β̄(b) := supη∈Bk2(b)

β(η), respectively.

From Eqs.(15),(16),(19) and (21), we have

‖ξ0
(i+1) − η0

(i+1)‖ ≤ M(b)‖ξ0
(i) − η0

(i)‖,

where

M(b) := β̄(b)e−ᾱ(b)∆t(b) exp
[

∫ t0+L

t0
k3(u) dτ

]

. (22)

Since the excess converging time ∆t(b) represents a time interval until the
state asymptotically reaches Bb under the zero control input, and both ᾱ(b)
and β̄(b) have positive lower limits under b → 0 from their definitions, one
can let ∆t(b) be arbitrarily large by letting b be small. Therefore, there exists
a positive constant bmax such that, if b ≤ bmax, then M(b) in (22) is less than
1. This implies that the mapping g2 ◦ g1 becomes a contraction mapping.
This proves the lemma. �

Theorem 3. There exists a constant bmax > 0 such that, for any positive
b ≤ bmax, there exists ∆tb∞ ≥ 0 satisfying

lim
i→∞

∆t(i) = ∆tb∞,

and the state x(t) will converge on a (L + ∆tb∞)-periodic trajectory.

Proof. After a large enough period i satisfying i > istp, the assumptions
of Lemma 2 hold. Lemma 2 and the contraction mapping theorem [12]
imply that the mapping g2 ◦ g1 in (13) has a unique fixed point x̄0 and that
limi→∞ x0

(i) = x̄0 holds. The fact that the initial state and the control input
for each period converge as i → ∞ and that the system is input-to-state
stable from Assumption 2 prove the theorem. �

Here, we can prove that the state trajectory always converges on a pe-
riodic trajectory. Furthermore, the following theorem guarantees that the
excess converging time ∆tb∞ also converges on 0 as b becomes smaller.

Theorem 4. Suppose that iterative learning control applied to the plant achieves
a trajectory tracking control3. Then the following equation holds:

lim
b→0

∆tb∞ = 0

3For example, the authors’ paper [5] proves that ILC for a trajectory tracking problem of
simple mechanical systems always achieves the global minimum, i.e., the perfect tracking.
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Proof. Under b → 0, the problem reduces to that of ILC mentioned in
Section 2. From the assumption of the theorem, the control input converges
to an optimal control input ud which achieves an desired trajectory yd, i.e.,

lim
b→0

lim
i→∞

‖u(i) − ud‖L2 = 0. (23)

Also, from the definition of b,

lim
b→0

‖x0
(i)‖ = 0. (24)

Equations (23) and (24) and Assumption 2 yield

lim
b→0

lim
i→∞

(

x(i)
L − xd(L)

)

= 0. (25)

Equation (25) and the definition of b imply that

lim
b→0

lim
i→∞

∆t(i) = 0.

This proves theorem.

This theorem implies that the proposed method lets the trajectory con-
verge on the desired periodic one as the error bound parameter b → 0. This
fact allows us to obtain optimal control periodic solutions by a repetitive
control framework.

4. Simulation

This section exhibits the effectiveness of the proposed method via numer-
ical simulations. Here, let us consider a two-link robot manipulator moving
on a horizontal plane, depicted in Fig. 2. As in the figure, the joint angles
of the first and the second links are denoted by θ1 and θ2, respectively. The
physical parameters of this apparatus are summarized in Table 2.

Then the dynamics of this apparatus is described by a Hamiltonian con-
trol system (1). Here, the generalized coordinate q = (θ1, θ2)

⊤ ∈ R
2, and the

generalized momentum p is described by p = M(q)q̇, with the inertia matrix

M(q) =

(

b1 + b2 + 2b3 cos θ2 b2 + b3 cos θ2

b2 + b3 cos θ2 b2

)

,

13



θ1

x

y

z

θ2

Figure 2: A two-link robot manipulator

Table 2: Physical parameters

θi the joint angle of the i-th link [rad]
mi the mas of the i-th link [kg]
li the length of the i-th link [m]
lgi the length to the center of gravity [m]
Ii the inertia of the i-th link [kgm2]
di the friction term of the i-th link [Nms/rad]

where b1 := I1+m1l
2
g2+m2l

2
1 = 4

3
m1l

2
g2+m2l

2
1, b2 := I2+m2l

2
g2 = 4

3
m2l

2
g2 and

b3 := l1m2lg2. The state x := (q⊤, p⊤)⊤ ∈ R
4, and the Hamiltonian is given

by

H(x, u) =
1

2
pTM(q)−1p − qTu.

The structure and dissipation matrices are given by

J =

(

0 I
−I 0

)

, R =

(

0 0
0 diag(d1, d2)

)

.

The parameters used in the simulations are b1 =2.292, b2 =0.600, b3 =0.750,
d1 =0.2415, and d2 =0.2457. See [14] for the details of this apparatus.

As explained in Section 3, we need to apply a local feedback designed
by a generalized canonical transformation in order to obtain the closed-loop
system as a Hamiltonian system. Here we employ a PD pre-feedback

u = ū − KPq − KDq̇ +
∂V (q)

∂q

T
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Iteration law Memory
( )i-1
-

+ +
Σ

( )i
-

( )i

KD

KP

( )i
q
.

( )i
q

!
T

V
q

∂

∂

+

+qd

Hamiltonian System

uu u

Figure 3: Closed-loop system with PD pre-feedback

with a new input ū and the PD gains KP and KD, which are symmetric
positive-definite matrices. The scalar function V (q) denotes the virtual po-
tential energy of the system. Then the dynamics of the closed-loop system
is again described by a Hamiltonian system of the form (1), and this con-
trol system is depicted in Fig. 3. For this system, the output signal is
y = q = (θ1, θ2)

⊤, describing the joint angles.

4.1. Trajectory tracking control

Here we consider repetitive control for a trajectory tracking control prob-
lem. The desired trajectory for the output yd = (θd

1 , θ
d
2)

⊤ is given by

θd
1(t) :=

1

2
sin

π

2
(t − 1) +

1

2

θd
2(t) :=

{

0 (0 ≤ t < 3
8
L)

1
2
sin π

2
(t − 1 + 3

8
L) + 1

2
(t ≥ 3

8
L)

with the period L = 4 s, which is depicted in Fig. 4.
Now, apply the proposed method with the following cost function:

Γ(y) =
1

2
‖y − yd‖2

L2
. (26)

Then the corresponding iterative learning law can be obtained from

ū(2i+1) = ū(2i) + R(y(2i) − yd)

ū(2i+2) = ū(2i) − K(i)R(y(2i+1) − y(2i)). (27)
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Figure 4: Desired trajectory

For the detailed derivation of Eq. (27), see [5, 6, 7]. The simulation results of
the repetitive control are depicted in Figs. 5–8. Fig. 5 denotes the responses
of the joint angles θ1 and θ2 from the 1st period to the 8th period. Fig. 6
denotes those with their reference signals in the 55th period. Both figures
show that the joint angles are approaching their desired trajectories. Fig. 7
denotes the history of the cost function Γ in (26) with respect to the period
i (the learning step). This figure shows that the joint angles converge on
their reference trajectories, since the cost function decreases monotonically.
Furthermore, Fig. 8 denotes the excess converging time ∆t(i) with respect to
the period i. This figure shows that the period (L + ∆t(i)) converges on 4 s
after the 58 period. Thus the proposed repetitive control method works well
with a trajectory tracking control problem.
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Figure 5: Responses of θ1 and θ2 (from the
1st period to the 8th period)
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Figure 6: Responses of θ1 and θ2 (in the
55th period)

4.2. Optimal trajectory generation problem

Next, we consider repetitive control for an optimal control problem, that
is, an optimal trajectory generation problem. As explained in Footnote 2,
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Figure 7: Cost function Γ for trajectory
tracking control
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Figure 8: Excess converging time ∆t(i) for
trajectory tracking control

the desired (generated) trajectory has to be time symmetric with respect to
the period L4. Therefore, we employ a special cost function which achieves
desired intermediates and terminal joint angles, suppressing the input signal
u and preserving the time symmetry of the trajectory

Γ(y) =
1

2
kd‖F (t)(y − yd)‖2

L2
+

1

2
kt‖y −R(y)‖2

L2
+

1

2
ku‖u‖

2
L2

, (28)

where kd, kt, and ku are positive constants and the filter function F (t) is
defined with a small constant δ > 0 as

F (t) :=















1
2

(

1−cos
(

−ti+δ+t
δ

π
))

(ti−δ≤ t<ti)

1
2

(

1−cos
(

ti+δ−t
δ

π
))

(ti≤ t<ti+δ)

0 (otherwise)

,

where ti, i = 1, . . . , np with a positive integer np, denotes the time for each
desired intermediate (Fig. 9 illustrates F (t) with np = 1 and t1 = L/2).
Here, the first term of the cost function Γ in (28) is for achieving the desired
intermediates and terminal outputs (yd is an appropriate ‘virtual’ time sym-
metric reference output which is only valid for t satisfying F (t) 6= 0), the
second for time-symmetry, and the last for suppressing the input. Then the
corresponding iterative control law is given as follows:

ū(2i+1) = ū(2i)+R{kdF (t)(y(2i)−yd) + 2kt(y(2i)−R(y(2i)))}

ū(2i+2) = ū(2i)(idU − kuK(i)) − K(i)R(y(2i+1) − y(2i)).

4More precisely, the Hessian of the Hamiltonian function has to be so [5].
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Let the period be L = 4 s, the initial state be (0, 0), the desired terminal
state be the same as the initial one, and the desired intermediate state be
yd(L/2) = (θd

1(L/2), θd
2(L/2)) = (1.0, 1.0). The simulation results are de-

picted in Figs. 10–12. For reasons of space, only the responses with respect
to the first joint are shown. Fig. 10 denotes the history of the cost function
Γ in (28). The cost function decreases monotonically, and the desired tra-
jectory is generated automatically. Fig. 11 denotes the time response of the
angle of the first joint θ1 in the 1st, 2nd, and 5th period, and every 10 steps
from the 10th period to the 100th period. Furthermore, Fig. 12 denotes the
history of ∆t(i) with respect to period i. It eventually becomes quite small.
Thus repetitive control for an optimal control problem also works well. These
simulations demonstrate the effectiveness of the proposed algorithm.

L
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0

2
δ0

t
L

2

L
δ

2

L
+

Figure 9: Illustration of the filter function
F (t) with np = 1 and t1 = L/2
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Figure 10: Cost function Γ for optimal con-
trol
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5. Conclusion

In this paper, we have proposed a new framework for repetitive con-
trol of Hamiltonian systems based on iterative learning control (ILC) pro-
posed by the authors previously. Since this algorithm is based on the vari-
ational symmetry of Hamiltonian control systems, it is applicable to a class
of infinite-dimensional optimal control problems as well as conventional tra-
jectory tracking control problems.

We have shown the convergence analysis which guarantees the conver-
gence of the trajectory generated by this procedure on the periodic reference
or optimal trajectory under certain conditions. Furthermore, numerical sim-
ulations of a robot manipulator have shown the effectiveness of the proposed
method. Since the main purpose of the paper is to propose our novel repet-
itive learning algorithm and to prove its convergence, quantitative analysis
of performance of the proposed method is our future work.

So far, we have developed our ILC framework. We have executed labo-
ratory experiments with a robot manipulator with input saturations in [6]
and a nonholonomic vehicle systems in [15]. Further, we are tackling optimal
gait generation for a walking robot, described as a nonlinear hybrid system
in [16]. The method proposed here enables us to apply these techniques to
a repetitive control framework as well as an ILC one. Thus the proposed
method is expected to be useful for several purposes.
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