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Abstract—In this paper, we propose a modification of our
previous learning gait generation method. Our framework can
generate an optimal feedforward control input and the corre-
sponding periodic trajectory minimizing the L2 norm of the
control input by iteration of laboratory experiments. In order to
generate a periodic gait, the previous result imposed a constraint
that the initial state of the robot is equivalent to the state just
after the collision between the foot and the ground, by equipping
a reference trajectory defined as a time-reversal version of a
pair of the output signal and its time derivative. However, it
occasionally happens that the reference velocity at the terminal
time conflicts a desired terminal velocity for a periodic trajectory.
This paper proposes a modified learning algorithm with another
reference trajectory whose velocity coincides with the desired
one. Although calculation of such reference trajectory generally
requires information of the transition mapping, this method
estimates the mapping by the least-squares with the stored
experimental data. We also propose a technique to generate an
optimal gait not only energy-efficient but also avoiding the foot-
scuffing problem.

Keywords—nonlinear control; Hamiltonian systems; iterative
learning control; gait generation; passive dynamic walking.

I. INTRODUCTION

Recently, control of walking robots has become an active
research area. As the technology for walking robots evolves,
an optimization problem of gaits with respect to the energy
consumption becomes increasingly important. Most of walking
pattern generation and control methods have been based on the
zero moment point (ZMP) criterion, e.g., [1], [2], [3]. Passive
dynamic walker studied by McGeer [4] also attracts attention.
Behavior analysis of passive walkers were studied by, e.g.,
[5], [6]. Walking control methods based on passive dynamic
walking have been proposed by many researchers, e.g. [7], [8],
[9], [10], [11], as is antithetical to the ZMP based control with
respect to the energy consumption.

On the other hand, we consider that physical property and
learning control are useful tools to tackle the optimal gait
generation problem. In [12], [13], [14], we have proposed
optimal gait generation framework via iterative learning con-
trol (ILC) proposed in [15], which utilizes a property of

Hamiltonian systems called variational symmetry. Hamiltonian
systems have been introduced to represent physical systems
and they explicitly possess good properties for the control
design such as passivity, symmetry and so on. Our technique
can generate an optimal periodic gait which minimizes a
cost function by iteration of laboratory experiments. The cost
function consists of two terms: one attempts to minimize
the L2 norm of the control input, and the other attempts to
make a trajectory periodic, which is a constraint term for a
periodic gait. By taking advantage of variational symmetry of
Hamiltonian systems, the proposed method does not require
precise knowledge of the plant system. So far, in numerical
simulations, we have generated an optimal running gait of
a planer one-legged hopping robot [12] and optimal walking
gaits of a planer compass-like biped robot [13] and one with
a torso [14], respectively.

In this paper, we consider a kneed biped robot with torso and
propose a modification of our previous learning gait generation
method in considering discontinuous velocity transitions. The
following are some reasons why we introduce knees. Firstly,
we can investigate more general and human-like walking
motions. Secondly, controlling knees so that the robot achieves
foot clearance properly, enables us to avoid the foot scuffing
problem [4], [16]. This problem is that, in the case of compass-
like robot, the swing leg scuffs the ground when it passes the
stance leg, and this phenomenon causes the robot to fall down.
We consider a necessary condition for a periodic trajectory as
that the state just after the collision between the swing leg
and the ground coincides with the initial state. However, our
previous works [13], [14] require information of the inertia
matrix of the robot to deal with such a state constraint. Since it
is sometimes difficult to obtain the accurate inertia information
of robots, we assigned another constraint which has a similar
effect and is available without the inertia information, by
introducing a reference trajectory. The reference trajectory
is defined on a time interval [t1 − ∆t, t1] as the time
reversal of the output signal y and its time derivative ẏ on
[t0, t0+ ∆t], where t0 and t1 represent the initial time and



the terminal time (just before the collision), respectively and
∆t denotes a sufficiently small positive constant. The output
y corresponds to the set of joint angles of the robot. However,
it occasionally happens that the reference velocity at t1, i.e.
lim∆t → 0(y(t1) − y(t1 − ∆t))/∆t, conflicts a desired
terminal velocity for a periodic trajectory. In this paper, we
propose a modified learning algorithm with another reference
trajectory whose velocity coincides with the desired one for
a periodic trajectory. Although calculation of such reference
trajectory generally requires information of the transition map-
ping which maps from the velocity just before the collision to
that just after the transition, the proposed method estimates
the mapping by the least-squares with the stored experimental
data. We also propose a technique to generate an optimal
gait not only energy-efficient but also avoiding the foot-
scuffing problem. Finally, numerical simulations demonstrate
the validity of the proposed method.

II. PRELIMINARIES

This section briefly refers to preliminary backgrounds.

A. Hamiltonian systems and variational symmetry

Our plant is a Hamiltonian system with dissipation Σxt0 :
Lm

2 [t0, t1] → Lm
2 [t0, t1] : u 7→ y with a controlled Hamilto-

nian H(x, u, t) as

Σxt0 :


ẋ = (J − R)

∂H(x, u, t)
∂x

>
, x(t0) = xt0

y = −∂H(x, u, t)
∂u

>
. (1)

Here x(t) ∈ Rn, u(t), y(t) ∈ Rm describe the state, the input
and the output, respectively. The structure matrix J ∈ Rn×n

and the dissipation matrix R ∈ Rn×n are skew-symmetric and
symmetric positive semi-definite, respectively. The variational
system δΣxt0 of the system Σxt0 represents the Fréchet deriva-
tive of Σxt0 . According to [15], under certain conditions the
adjoint of the variational system (δΣxt0 )∗ has the following
relationship with the variational system δΣxt0

(δΣxt0 (u))∗(v) = R(δΣφt0 (w))R(v)

≈ 1
ε
R ◦ (Σφt0 (w + εR(v)) − Σφt0 (w)), (2)

where φt0 and w denote appropriate initial condition and input,
respectively, ε represents sufficiently small positive constant
and R is a time-reversal operator defined by R(u)(t − t0) =
u(t1 − t) for ∀t ∈ [t0, t1]. This property is called variational
symmetry of Hamiltonian systems. Equation (2) implies that
one can calculate the input-output mapping of the adjoint
by only using the input-output data of the original system.
For how to concretely apply the property to iterative learning
control, see [15].

B. Previously proposed learning gait generation method

In our previous works [13], [14], we proposed the following
cost function to generate an optimal periodic gait:

Γ̂(y, ẏ, ū) :=
1
2

∫ t1

t0

(
(R(y)(τ) − Cy(τ))>ν1(τ)Λy

×(R(y)(τ) − Cy(τ)) + (R(ẏ)(τ)−fΠ(y, ẏ)(τ))> (3)

×ν1(τ)Λẏ(R(ẏ)(τ)−fΠ(y, ẏ)(τ)) + ū(τ)>Λūū(τ)
)

dτ,

where appropriate positive definite matrices Λy,Λẏ, Λū ∈
Rm×m represent weight matrices for the configuration and
phase coordinates restrictions and the input minimization,
respectively. Since the support and swing legs change each
other after the collision, a matrix C ∈ Rm×m represents
the leg exchange. ν1(t) ∈ R represents a filter function with
respect to the time t defined as

ν1(t) :=
0 (t0 ≤ t < t1 − ∆t)

1
2

(
1 − cos

(
t − (t1 − ∆t)

∆t
π

))
(t1 − ∆t ≤ t ≤ t1)

,(4)

where ∆t should be chosen as a sufficiently small positive
constant. Figure 2 illustrates ν1(t). fΠ : Rm × Rm → Rm :
(q−, q̇−) 7→ q̇+ represents the transition mapping which maps
from the pair of the configuration and phase coordinates just
before the collision to the phase coordinate just after the
transition. In what follows, the subscripts (·)− and (·)+ denote
just before and after the transition, respectively. Note that the
configuration coordinate is assumed not to change under the
collision, i.e., q+ ≡ q−. Here we also assume the following

Assumption 1: For any q−, a mapping f
q−
Π := fΠ(q−, ·) :

Rm → Rm : q̇− 7→ q̇+ is diffeomorphic.
The previously proposed method minimizes the cost func-

tion (3) by combining iterative learning control proposed in
[15] and an estimation method of the transition mapping fΠ

via the least-squares and eventually generates an optimal gait.
See [13], [14] for the details.

III. MAIN RESULTS

This section proposes a modification of learning optimal
gait generation method.

A. Kneed biped with torso

We consider a fully actuated planar kneed biped with torso
depicted in Fig. 1. Assumptions on this robot conforms [16]
and they are omitted here. The configuration coordinate is
defined as q := (θ1, θ2, θ3, θ4, θ5)>. The leg exchange matrix
C is given by

C :=

(
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 1

)
. (5)

Here is a new input v defined as v := (u1 + u2,−u2 +
u3,−u4−u5, u5,−u3+u4)>. Then, the dynamics of this robot
is described by a Hamiltonian system of the form (1) with the
output y = q and a fixed initial state xt0 = (q>t0 , p

>
t0)

>.
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Fig. 1. Kneed biped with torso

Before the iterative learning control method is applied,
feedback controllers are typically employed to the control
system in order to render the system asymptotically stable.
In [17], a generalized canonical transformation, which is a
pair of feedback and coordinate transformations preserving the
Hamiltonian structure in (1), is proposed. It is known that in
the case of a typical mechanical system, a simple PD feedback
preserves the structure of the Hamiltonian system [17], [15].
Let us consider a PD controller

v = −KP q − KD q̇ + ū, (6)

where the input ū is for iterative learning control and
KP ,KD ∈ R5×5 are symmetric positive definite matrices.

B. Modification of the constraint term for periodic trajectories

Due to the time-reversal operator R and the filter func-
tion ν1, the first term of the cost function (3) attempts
to make y(t0) = Cy(t1) hold and the second one at-
tempts to make ẏ(t0) = fΠ(y(t1), ẏ(t1)) hold, respectively.
However, the following conflict occasionally happens that
lim∆t → 0 C(y(t1) − y(t1 − ∆t))/∆t does not coincide
with a desired terminal velocity for a periodic trajectory, i.e.,
fΠ(y(t1), ẏ(t1)).

In this paper, firstly, we propose another constraint term for
a periodic trajectory instead of the first and second terms of
the previous cost function (3). We consider conditions for a
desired periodic trajectory yd. At the terminal time t1, yd has
to satisfy yd(t1) = Cyt0 , where yt0 represents a fixed initial
value of the output generated by a fixed initial state of the
system xt0 , i.e., yt0 = qt0 . Here we define gΠ(q+, q̇+) :=
(fq+

Π )−1(q̇+) (note that q− ≡ q+). Then the time derivative
of yd at t = t1 has to satisfy ẏd(t1) = q̇d− = gΠ(Cyt0 , ẏt0).
Thus we obtain the following desired trajectory around the
terminal time as

yd(t) := q̇d−(t − t1) + Cyt0

= gΠ(Cyt0 , ẏt0)(t − t1) + Cyt0 , (7)

which satisfies the above two conditions. We utilize yd in Eq.
(7) as a reference trajectory.

Secondly, we propose a constraint term in order to avoid the
foot-scuffing problem. It attempt to lift the toe of the swing
leg to a certain height around the middle time of the period,

i.e., (t1 − t0)/2. Due to Fig. 1, the height of the toe at the
time t is given by

h(y)(t) = l1(cos y1(t)−cos y4(t))+l2(cos y2(t)−cos y3(t)),

where yi denotes the i-th element of y. We introduce the
following two filter functions: one is with respect to the height
and the other is with respect to the time. They are defined as

F (h) =

{
h − hd (0 ≤ h ≤ hd)

0 (h > hd)
,

where a design parameter hd denotes the reference height, and

ν2(t) :=
1

2

0
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0

@
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π
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2
,

t0+t1+2∆t̄
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,

where a design parameter ∆t̄ represents an appropriate posi-
tive constant. Figure 2 illustrates ν2(t).
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Fig. 2. Filter functions ν1 and ν2

Finally, we propose the following cost function:

Γ(y, ū) :=
1
2

∫ t1

t0

(
(y(τ) − yd(τ))>ν1(τ)Λy(y(τ) − yd(τ))

+λhν2(τ)(F (h(y(τ))))2 + ū(τ)>Λūū(τ)
)

dτ, (8)

where an appropriate positive constant λh represents a weight-
ing coefficient and yd is defined in Eq. (7). Although infor-
mation of the transition mapping gΠ is required to derive the
iteration law for learning, we estimate the mapping via the
least-squares with the stored experimental data.

The iteration law for the control input is derived based on
the steepest descent method [15], [13], [14]. We calculate the
Fréchet derivative of the cost function (8) as

δΓ(y, ū)(δy, δū) = 〈ν1Λy(y − yd), δy〉

+ 〈λhν2F (h(y)),
dF

dh

∂h

∂y
δy〉 + 〈Λūū, δū〉

= 〈ν1Λy(y − yd) + λhν2F (h(y))
dF

dh

∂h

∂y

>
, δy〉 + 〈Λūū, δū〉

=: 〈∇yΓ(y, ū), δy〉 + 〈∇ūΓ(y, ū), δū〉
= 〈∇ūΓ(y, ū) + δΣxt0 (ū)∗(∇yΓ(y, ū)), δū〉, (9)

where ∇yΓ(y, ū) and ∇ūΓ(y, ū) denote the partial gradients
of the cost function with respect to the output and the input,



respectively, and we have

dF

dh
=

{
1 (0 ≤ h ≤ hd)
0 (h > hd)

,

∂h

∂y
= (−l1 sin y1,−l2 sin y2, l2 sin y3, l1 sin y4, 0). (10)

From Eq. (9), the gradient of the cost function

Γū(ū) := Γ(Σ(ū), ū),

denoted by ∇ūΓū(ū) is given by

∇ūΓū(ū) = ∇ūΓ(Σ(ū), ū) + δΣxt0 (ū)∗(∇yΓ(Σ(ū), ū)).
(11)

Then the steepest descent method implies that the input should
be updated as follows in order to minimize the cost function:

u(i+1) = u(i) − K(i)∇ūΓū(ū(i)), (12)

where the subscript i denotes the i-th iteration in a laboratory
experiment and a positive definite matrix K(i) represents a
step parameter. Variational symmetry in Eq. (2) enables one
to calculate the gradient by only using the input-output data
of the original system, that is experimental data, as

∇ūΓū(ū) ≈

∇ūΓ(Σ(ū), ū)+
1
ε
R(Σφt0(w+εR(∇yΓ(Σ(ū), ū)))−Σφt0(w))

. (13)

For a given pair of the state x = (q>, p>)> and the input
ū, the literature [18] (see also [19]) gives a way to produce
a pair of the initial condition φt0 and the input w satisfying
conditions for variational symmetry. The initial condition in
the configuration and phase coordinates corresponding to φt0 ,
denoted by Qφ

t0 , and w are given by

Qφ
t0 = (q(t1)>,−q̇(t1)>)>,

w = KPR(q) − KDR(q̇). (14)

Although it is necessary to calculate yd in Eq. (7) in order to
obtain the partial gradient ∇yΓ(Σ(ū), ū), the unknown desired
velocity just before touchdown q̇d− which mapped from the
nonlinear mapping gΠ is generally required. Here we propose
a technique to estimate q̇d− by the least-squares with the stored
experimental data. Since the following relation holds:

dq̇− =
∂gΠ(q+, q̇+)
∂(q+, q̇+)

(
dq+

dq̇+

)
, (15)

we approximate dq+, dq̇+ and dq̇− in (15) by differences
between the desired state and the stored data by the i-th
experiment. We define the estimate value of q̇d− at the i-th
iteration as

˜̇qd−(i) := q̇−(i) +
˜∂gΠ(q+, q̇+)

∂(q+, q̇+)

∣∣∣q+ =q+(i)
q̇+ = q̇+(i)

(
qd+ − q+(i)

q̇d+ − q̇+(i)

)
(16)

and we calculate the estimate value of the Jacobian ∂̃gΠ
∂(q+,q̇+)

by the least-squares. It should be recalled that the rest desired
state qd+ and q̇d+ are already given as qd+ = Cqt0 and q̇d+ =
q̇t0 , respectively. Let us define the following data sets

∆Y−(i) :=
[
q̇−(1)−q̇−(i), · · · , q̇−(i−1)−q̇−(i)

]
,

∆Y+(i) :=

[
q+(1)−q+(i), · · · , q+(i−1)−q+(i)

q̇+(1)−q̇+(i), · · · , q̇+(i−1)−q̇+(i)

]
. (17)

The size of ∆Y−(i) is 5× (i− 1) and that of ∆Ẏ+(i) is 10×
(i−1). From Eqs. (15) and (17), we can estimate the Jacobian
as

˜∂gΠ(q+, q̇+)
∂(q+, q̇+)

∣∣∣q+ =q+(i)
q̇+ = q̇+(i)

:= ∆Y−(i)∆Ẏ †
+(i), (18)

where (·)† represents the pseudo inverse matrix of (·). We can
also utilize MATLAB’s arithmetic operator of the matrix left
division to solve Eq. (18) easily. Consequently, from Eqs. (16)
and (18) we obtain

˜̇qd−(i) = q̇−(i) + ∆Y−(i)∆Y †
+(i)

(
qd+ − q+(i)

q̇d+ − q̇+(i)

)
.

Finally, let us summarize the proposed learning algorithm.

Step 0 : Set appropriate positive definite matrices Λy and
Λū, an appropriate positive constant λh as weight-
ing parameters, positive constants ∆t, ∆t̄ and hd

as design parameters, a sufficiently small positive
constant εstop as a convergence parameter, appro-
priate positive definite matrices KP and KD for
PD feedback (6) and an appropriate initial condition
Qt0 := (q>t0 , q̇

>
t0)

>. Set i = 1. Then, go to Step 1.
Step i (1 ≤ i ≤ 10): Execute preliminary experiment with

an appropriate initial condition around Qt0 and zero
control input (or an appropriate initial input) in order
to obtain data sets ∆Y− and ∆Y+ defined in Eq. (19),
which are slight modifications of those in Eq. (17),
in order to calculate ỹd which is an estimate value
of yd in Eq. (7).
Set i = i + 1. Then, go to Step i.

Step i (i = 11): Execute laboratory experiment with xt0

and zero control input (or an appropriate initial
input). Let Q(i) := (q>(i), q̇

>
(i))

>, y(i) and ū(i) denote
the corresponding data obtained by the experiment,
respectively. Set k = 4. Then, go to Step 3k.

Step 3k : Execute the 3k-th laboratory experiment via the
following iteration law Qt0(3k) = (q(t1)>(3k−1),−q̇(t1)>(3k−1))

>

ū(3k) = KPR(q(3k−1)) − KDR(q̇(3k−1))
.

Go to Step 3k+1.
Step 3k + 1 : Execute the (3k+1)-th laboratory experiment

via the following iteration law with a sufficiently



small positive constant ε(k)
Qt0(3k+1) = Qt0(3k)

ū(3k+1) = ū(3k) + ε(k)R(ν1Λy(y(3k−1) − ỹd(k))
+ λhν2F (h(y(3k−1)))dF

dh
∂h
∂y

>
)

.

Here ỹd(k) is calculated by

ỹd(k) =
(
q̇(3k−1)(t1)+∆Y−(k)∆Y †

+(k)

(
Cqt0−q+(3k−1)

q̇t0−q+(3k−1)

))
× (t − t1) + Cqt0

with data sets ∆Y−(k) and ∆Y+(k) as

∆Y−(k) :=
h

q̇−(1)−q̇−(3k−1), · · · , q̇−(10)−q̇−(3k−1)

i

(k = 4)

h

q̇−(1)−q̇−(3k−1), · · · , q̇−(10)−q̇−(3k−1),

q̇−(14)−q̇−(3k−1), · · · , q̇−(3k−4)−q̇−(3k−1)

i

(k > 4)

,

∆Y+(k) :=

"

q+(1)−q+(3k−1), · · · , q+(10)−q+(3k−1)

q̇+(1)−q̇+(3k−1), · · · , q̇+(10)−q̇+(3k−1)

#

(k = 4)

"

q+(1)−q+(3k−1), · · · , q+(10)−q+(3k−1),

q̇+(1)−q̇+(3k−1), · · · , q̇+(10)−q̇+(3k−1),

q+(14)−q+(3k−1), · · · , q+(3k−4)−q+(3k−1),

q̇+(14)−q̇+(3k−1), · · · , q̇+(3k−4)−q̇+(3k−1),

#

(k > 4)

.(19)

Go to Step 3k+2.
Step 3k + 2 : Execute the (3k+2)-th laboratory experiment

via the following iteration law with an appropriate
positive definite matrix K(k)

Qt0(3k+2) = Qt0(3k−1)

ū(3i+2) = ū(3k−1)−K(i)

(
Λūū(3k−1)

+
1

ε(k)
R(y(3k+1) − y(3k))

) .

If Γ(y(3k−1), ū(3k−1))−Γ(y(3k+2), ū(3k+2)) < εstop,
the procedure terminates. Otherwise, set k = k + 1
and go to Step 3k.

The triple iteration laws imply that this learning procedure
needs three experiments to execute a single update in (12).
In the 3k-th iteration, we produce a trajectory φ corresponds
to x(3k−1) by Eq. (14), in order to utilize variational sym-
metry (2). In the (3k+1)-th iteration, we calculate the output
Σφt0(w+εR(∇yΓ(Σ(ū), ū))) in Eq. (13). Then the input and
output signals of δΣxt0 (ū)∗(∇yΓ(Σ(ū), ū)) in Eq. (11) can be
calculated from Eq. (13). With this information, the gradient
of the cost function with respect to the input ∇ūΓū(ū(3k−1))
(see Eq. (11)) is obtained. Finally, the input for the (3k+2)-th
iteration is given by Eq. (12) with these signals.

Remark 1: If the learning procedure is executed around a
symmetric trajectory, one can iterate the following procedure

after executing Step 11 in the above algorithm (in this case,
the initial value of k is 6 not 4)

Qt0(2k) = Qt0(2k−1)

ū(2k) = ū(2k−1) + ε(k)R(ν1Λy(y(2k−1) − ỹd(k))

+ λhν2F (h(y(2k−1)))dF
dh

∂h
∂y

>
)

(20)
Qt0(2k+1) = Qt0(2k−1)

ū(2k+1) = ū(2k)−K(k)

(
Λūū(2k)+

1
ε(k)

R(y(2k+1)−y(2k))
)

with appropriately modified data sets ∆Y−(k) and ∆Y+(k).

IV. NUMERICAL EXAMPLE

We apply the proposed algorithm in the previous section
to the kneed biped with torso depicted in Fig. 1 to generate
an optimal gait trajectory on the level ground. The physical
parameters of the robot are chosen as mT = 10.0,mH =
13.0,m1 = m2 = 2.25 [kg] and a1 = b1 = a2 = b2 =
0.23, lT = 0.30 [m]. Gains KP = diag(4, 4, 4, 4, 4) and
KD = diag(2, 2, 2, 2, 2) are chosen for the PD feedback
(6). We utilize the following design parameters with respect
to weighting functions for the cost function (8) as Λy =
diag(2, 0, 2, 2, 0), Λū = diag(1×10−9, 1×10−9, 1×10−9, 1×
10−9, 1 × 10−9) and λh = 1, those with respect to the filter
functions ν1 and ν2 as ∆t = ∆t̄ = 5×10−3[s] and those with
respect to ILC algorithm as K(·) = diag(200, 0, 100, 100, 0)
and ε(·) = 1. In this section, we show the results by 2
Step learning scheme in Remark 1. We proceed 800 steps
of the learning procedure which means 1610 simulations
including 10 preliminary experiments with the following initial
condition:

qt0 = (−0.15,−0.15, 0.15, 0.15, 0.0),
q̇t0 = (0.65, 0.65, 0.24, 1.1, 0.0),

which is heuristically determined.
Figure 3 shows the history of the cost function (8) along

the iteration decreasing monotonically. It implies that the
output trajectory converges to an (at least locally) optimal
one smoothly. Figure 4 represents the animations of the robot
before and after learning, respectively and it implies that a
walking motion seems to be generated eventually. While many
conventional results equipped heuristically designed reference
trajectories for knee joints in order to control kneed biped
robots, the proposed method can generate an optimal trajectory
which achieves foot clearance properly. Figure 5 exhibits the
phase portrait of q-q̇. The fact that an almost periodic trajectory
is generated follows from that the phase portraits in these
figures form almost closed orbits.

V. CONCLUSION

In this paper, we have proposed a modification of our
previous learning gait generation method by equipping a refer-
ence trajectory considering discontinuous velocity transitions.
This method can generate an optimal feedforward control
input and the corresponding periodic trajectory minimizing



Fig. 3. Cost function

Fig. 4. Stick diagrams before and after learning

Fig. 5. Phase portraits

the L2 norm of the control input. Although calculation of
such reference trajectory generally requires information of
the transition mapping, the proposed method estimates the
mapping by the least-squares with the stored experimental
data. Thus, it does not require the precise knowledge of the
plant system nor the discontinuous state transition model. We
also have proposed a technique to generate an optimal gait
not only energy-efficient but also avoiding the foot-scuffing
problem. Finally, numerical simulations of a kneed biped with
torso have demonstrated the validity of the proposed method.
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